Construction Project Management Fourth Edition

Project Planning and Scheduling

Chapter 10

The organization and content of this presentation is based on a scheduling seminar one of the authors teaches for the R.S. Means Company. David Pierce, Southern Polytechnic University and a consultant to R.S. Means, was the principal author of this seminar.

ALWAYS LEARNING Construction Project Management, 4/e Frederick Gould, Nancy Joyce Copyright © 2014 by Pearson Education, Inc. All Rights Reserved

Construction Schedule

- Series of tasks or activities
 - Arranged in a logical order
 - Depicting a start time
 - Showing activity durations
 - Indicating a completion time

Schedule Objectives

- Determine Project Completion Time
- Determine Critical Activities
- Identify which activities can be delayed
- Use as a tool to manage a project

Scheduling Uses

- Owner program planning
- "What if" Analysis
- Project Coordination
- Analyze and document project changes
- Resource Management
- Project Reporting and Monitoring

The Critical Path Method

- Break a job down into manageable/small parts
- Analyze each part for time and resources
- String them together in sequence

Diagramming formats

 How to indicate logic/ sequence/order of the work

Logic Problems

Demo Diagrams

Activity B cannot start until activity A is completed	A → B
Activity A must be complete before B and C can start	$A \xrightarrow{B}_{C}$
C cannot start until A and B are completed.	$\begin{array}{c} A \\ B \end{array} \longrightarrow C \\ \end{array} $
C cannot start until A and B are completed, and D, E, and F cannot start until C is completed.	$\begin{array}{c} A \\ B \end{array} \xrightarrow{} C \xrightarrow{} D \\ E \\ F \end{array}$
B follows A C runs concurrent with A and B D follows B and C	$A \xrightarrow{B} D$

Key questions to ask when establishing sequence

- What must go before the activity?
- What must go after the activity?
- What can go on at the same time as the activity?

CPM job calculations

- Goals of the calculation procedure
 - To find starting times for all activities
 - To find overall job duration
 - To find critical activities

Definitions

- Early Start (ES)
- Early Finish (EF)
- Late Start (LS)
- Late Finish (LF)
- Total Float

Calculation Steps

- Forward Pass
 - Early Times
- Backward Pass
 - Late Times
- Find Float Times

Network Problem 1

 $\begin{array}{c} \mbox{Copyright} @ 2014 \mbox{ by Pearson Education, Inc.} \\ \mbox{All Rights Reserved} \end{array} PEARSON \end{array}$

ALWAYS LEARNING Construction Project Management, 4/e Frederick Gould, Nancy Joyce $\begin{array}{c} \mbox{Copyright \mathbb{C} 2014 by Pearson Education, Inc.} \\ \mbox{All Rights Reserved} \end{array} PEARSON$

Network Problem 2

 $\begin{array}{c} \mbox{Copyright} @ 2014 \mbox{ by Pearson Education, Inc.} \\ \mbox{All Rights Reserved} \end{array} PEARSON \end{array}$

ALWAYS LEARNING Construction Project Management, 4/e Frederick Gould, Nancy Joyce $\begin{array}{c} \mbox{Copyright} @ 2014 \mbox{ by Pearson Education, Inc.} \\ \mbox{All Rights Reserved} \end{array} PEARSON \end{array}$

How to Plan a Project?

- Review historical data
- Review Contract
- Review Drawings and Specs
- Communicate

Basic Idea

- Break the job down into its component parts
- Figure out how long each part should take
- Decide the sequence of construction
- Figure out how long the job as a whole should take

Breaking The Job Down Into Activities

- Small/manageable parts
- Individual tasks must add up to the whole
- 20/80 rule

Activity types

- General types
 - Construction
 - Procurement
 - Administrative and support

Activity Types

- Specific types
 - Physical elements
 - Trade, skill or crew (also called task)
 - Contractual division
 - Organizational responsibility
 - Physical or geographic area

System for Description

- Action
- Building element
- Location

Separating the Activities

- Separating actions
- Separating the work items
- Separating areas

The Concept of Level of Detail

- General phase list
- Specific physical element list
- Detailed task list

Tips on Activity List Development

- Brainstorming helps
- Make a large list first, then cull
- Use all sources of information
- Do a preliminary list, then refine

Planning the Sequence of Work

Establish the Logic/Sequence of all tasks necessary to complete the project

Priority of Relationships

- Physical
- Managerial
- Administrative

Development of the Overall Logic Diagram

- Go from the general to the specific
- Go from large to small
- Go from phase to structure to task

Tips for Establishing Work Sequences

- Consider the perspective of the on site superintendent
- Never let "the computer" dictate sequence
- Remember that scheduling is a creative process

Estimating Duration Times

ALWAYS LEARNING Construction Project Management, 4/e Frederick Gould, Nancy Joyce Copyright © 2014 by Pearson Education, Inc. **PEARSON** All Rights Reserved

Rules for Estimating Durations

- Assume each activity will be done normally
- Evaluate each activity independently
- Use consistent time units
- Keep good records as the schedule is developed

Adjustment of Calculated Times (cont.)

- Labor hour productivity does not govern activity time
- Take learning curves into account
- Determine subcontractor activity times
- Apply experience to the final result

Adjustment of Calculated Times

- Round up all times
- Ensure productivity data is used correctly
- More than one type of work in the activity
- Not all scheduled work time is production time

Calculations of Activity Durations

Labor hour productivity methodDaily production rate method

Derivation Typical Means Line

BCCD line 03 30 53.40 3920

Durations Using the BCCD

- 1. Install 2770 feet reinf conc strip ftg, 36"w x 12"dp
- Install 760 feet, 3'dp x 12" thk solid CMU fndn wall, parged 1/2" thk
- 3. Install 620 feet 12' hi part wall, 2x4 wd stud@16"cc,1/2" std gyp board, tape/fin
- 4. Install 585 feet 6" dia PVC Sch 40 pipe, cplgs@10', hangars 3@10'
- 5. Paint 390 feet x 12'6" hi alum siding, primer + 2 coats ext latex by brush

Goals of the Project Calculation Procedure

- To find starting times for all activities
- To find overall job duration
- To find critical activities
- To determine where we have flexibility

Calculating Overall Job Duration

Forward Pass
Backward Pass
Total Float

Advanced Calculations

- Lagged relationships
 - Start to start
 - Finish to finish
- Constrained dates
 - Start no earlier than
 - Finish no later than
- Calendars
 - Basic calendars
 - Dealing with the effect of weather on project calendars

How to Communicate Schedule Info?

- Use Barcharts
- Don't Overload People With Information
- Meet Regularly to Review Results and Plan Action

Questions

- Who will use the information?
- What will they need to know?
- How can we design the schedule to provide the proper information at the right time

Monitoring And Controlling The Project

- Good initial plan essential but not enough
- Events occur to alter the plan
- PM must be able to deal with these changes

The Monitoring Process

- Monitor progress
- Compare progress to goals
- Take corrective action

Monitoring Progress

- Determine present status
- Behind? On-time? Ahead?
- How does Present affect Future?

Steps in Updating

- Measure progress of each task individually
 Measure impact of the tasks on the
 - project as a whole

How Often to Update??

Quarterly?
Monthly?
Weekly?
Daily?

Updating the Individual Activities

- Cases
- Concepts
 - DD
 - PC
 - RD
 - ExF

 Problems with the various update methods

Where to Find Progress Information

- Measure actual work done
- Daily job logs
- Interviewing field personnel
- Job records
- Other areas to check
- Measuring progress on the entire job

Comparing Progress to Goals

Setting the target schedule
Displaying the results
Preventing information overload

Analyzing Job Status

- Baseline/Target schedule
- Do not display Float
- PM considers all legitimate reasons for changing dates

What to look for in project reports

- Status of critical activities
- Activities with low production rates
- Delays in resources delivery
- Activities with more downstream
- Changes in outside factors

Taking corrective action

- The necessity for follow-up
- Types of corrective action
 - Apply more resources
 - Re-examine the logic

The Key Element of Communication

- Consult with all personnel
 Display the information in the clearest possible way
- Communicate regularly