
NP and P Packaged in Complexity

Byron Oswaldo Ullauri

In this note, we explore an important concept within the field of mathematics and
computer science that is ubiquitous, namely the NP problems. We begin with
algorithms that are constantly used to solve various problems; an example being
those that require complicated data processing. In such cases, mathematicians and
computer scientists have not always been able to solve or find the most effective
way of approaching a problem. As a result, a significant part of both fields requires
the study of problems as related to the algorithms by which they are solved and
tested. By definition, an algorithm describes a method that can efficiently solve a
problem. In computational terms, this efficiency refers to the amount of time it
takes to run the algorithm relative to the input used, formally known as an
algorithm’s time complexity. In relation to this, it’s generally agreed upon that
problems which are solvable within polynomial time, a run time time resulting
from “a simple polynomial function of the size of the input” (6), use efficient
algorithms to do so. The overlying theory that accompanies these statements is
known as Complexity Theory. It states that their level of difficulty can classify
problems. The different possible classes that problems can fit into include NP, P,
NP-Hard, and NP-Complete problems.
 NP-Problems, or Nondeterministic Polynomial, describe the class of
problems that can be solved and verified as correct within polynomial time. In
other words, this class encompasses problems that can be solved through the use
of inefficient methods and proof, but can be efficiently verified as having a valid
proof. An example of such a problem is found in a case where you are given an
array of numbers and are asked if it is possible to split it into two parts that when
added form an equal sum (3). In order to solve this problem, you would have to
check numerous subsets, then add the numbers on each side, and see if both sums
are equal. Although you will eventually reach a conclusion, depending on the size
of the array, the amount of time it would take to iterate through this would be
increasingly inefficient. On the other hand, if you were able to split the array into
two equal sums, checking your approach and solution would just involve a couple
steps of adding and comparing the sum on each side, thus making it possible to
efficiently verify it.
 P-Problems are a subset of problems within NP such that they encompass
problems that can be both solved and verified efficiently. The P in this class stands
for polynomial time referring to the number of steps used in the algorithm. As
previously mentioned, algorithms which are solved within polynomial time are
considered efficient. Consequently, P-Problems are also considered NP since their
solution is already efficient, meaning the solution’s verification would not require

the need for a proof. Examples of P-Problems include those found in basic
arithmetic or finding the digits in the value of Pi.
 NP-Hard problems are defined as being those whose solution can be
slightly modified into solving any NP-Problem. This means that a problem is
considered NP-Hard when there exists an NP problem that can be reduced to it
(within polynomial time) (7). According to Wolfram MathWorld, an NP-Hard
problem is described as being “at least as hard as any NP-problem.” Examples of
NP-Hard problems also include the subset sum problem mentioned before and a
problem known as the “Traveling Salesman Problem,” which will be defined as
NP-Complete.
 Finally, the last class of problems is known as NP-Complete. They
comprise problems which are both NP and NP-Hard. As a result, these types of
problems are what are considered the most “difficult” NP problems. An example
of an NP-Complete problem is the “Traveling Salesman Problem.” It states that a
salesman passing through n cities must find a path resulting in the least total
distance traveled if he/she wants to be the most efficient. No general method of
solution has been found although proposed solutions have been made within them,
solutions make use of the Hamiltonian Cycle, “a closed loop through a graph that
visits each node exactly once” (1). Instead, the only verifiable way of solving this
problem is to check all possible solutions, which at best results in exponential time
(4).
 Ultimately, Complexity Theory gives rise to a question that is still
unanswered: are all NP-problems actually P-problems? The underlying principle
behind this question is that if it is true, then all problems we consider NP actually
have efficient algorithms that we have yet to discover. This phenomenon is known
as the P vs NP question. In the past, a Linear Programming problem thought to be
NP was proven to be P by Leonid Khachiyan. His ground-breaking ellipsoid
algorithm found ways to minimize convex functions using iterative methods which
when applied to linear optimization was found to be highly effective (5). The fact
that Khachiyan was able to change a problem’s NP classification leaves the P vs
NP question completely open for debate.

References

1. http://mathworld.wolfram.com/
2. https://en.wikipedia.org/wiki/Time_complexity
3. https://cs.stackexchange.com/questions/9556/
 what-is-the-definition-of-p-np-np-complete-and-np-hard/9566#9566
4. https://www.mathsisfun.com/sets/np-complete.html
5. https://en.wikipedia.org/wiki/Ellipsoid_method
6. Google definition
7. https://en.wikipedia.org/wiki?curid=54681

http://mathworld.wolfram.com/
https://en.wikipedia.org/wiki/Time_complexity
https://www.mathsisfun.com/sets/np-complete.html
https://en.wikipedia.org/wiki/Ellipsoid_method

Nominating Faculty: Professor Satyanand Singh, Mathematics 2540, Department
of Mathematics, School of Arts and Sciences, New York City College of
Technology, CUNY.

Cite as: Ullauri, B.O. (2017). NP and P packaged in complexity. City Tech
Writer, 12, 85-86. Online at https://openlab.citytech.cuny.edu/city-tech-writer-
sampler/

https://openlab.citytech.cuny.edu/city-tech-writer-sampler/
https://openlab.citytech.cuny.edu/city-tech-writer-sampler/

