REVIEW PROBLEMS, EXAM 1 PRECALCULUS, MATH 1375

- 1. Solve for x: |x 1| = 8, |2x 3| = 9, 1 + |4 x| = -11.
- 2. Consider the line with the following equation:

(i)
$$3x - 5y = 10$$
, (ii) $x + y = 3$.

Write the equation of the line in slope-intercept form. Find the slope, the y-intercept, and draw the line.

3. Find the domains of the following functions:

$$f(x) = x^3 + 7x^2 + 4, \quad f(x) = \sqrt{x-1}, \quad f(x) = \frac{x}{x-5}.$$

4. Solve for x and write the solution in interval notation:

$$|2x+7| \le 13$$
, $|15-3x| \ge 6$, $|x-7| < -1$.

5. Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ for

$$f(x) = x^2 + 2$$
, $f(x) = 2x + 5$.

6. Find the composition functions $f \circ g$ and $g \circ f$ for the functions

$$(a)f(x) = \frac{1}{x+1}, \ g(x) = x^2 + 3,$$
 $(b)f(x) = \sqrt{x}, \ g(x) = x - 1.$

7. Find the inverse of the function f and check your solution.

$$f(x) = 2x + 1,$$
 $f(x) = x^3 - 1,$ $f(x) = \frac{2}{x + 7}.$

- 8. Find a polynomial f that fits the give data.
 - (a) f has degree 3; f has real coefficients, 1, i are roots, and f(0) = 4.
 - (b) f has degree 4; f has real coefficients, and 0, 2, 3+i are roots of f.
- 9. Find the roots for the following polynomials and use this information to factor the polynomials completely:
 - (a) $f(x) = 2x^3 8x^2 6x + 36$ (b) $f(x) = x^4 - 16$
 - (c) $f(x) = x^3 + 1$.