Review Problems, Exam I Math 2440 - Discrete Structures and Algorithms, I

1. Let $P(x)$ be the statement $x=x^{4}$. If the domain consists of integers, what are these truth values?
(a) $P(0)$, (b) $P(2)$, (c) $P(-1),(\mathrm{d}) \forall x P(x)$ and (e) $\exists x P(x)$.
2. Construct a truth table for each of these compound propositions

$$
p \vee \rightharpoondown q, \quad(p \vee \rightharpoondown q) \rightarrow q, \quad(p \vee q) \rightarrow(p \wedge q)
$$

3. Consider the statement "The sum of any two perfect squares is a perfect square. "

Prove or disprove this statement.
4. Show that
(a) $p \vee(p \wedge q)$ and p
(b) $p \rightarrow q$ and $(\rightharpoondown q) \rightarrow(\neg p)$
are logically equivalent.
5. Write the negation of the following statements:
(a) $\forall x \exists y\left(2 x+11>y^{2}\right)$.
(b) $\exists x \forall y(x+y=0)$.
6. Prove that if x^{100} is irrational, then x is irrational.
7. Translate the statement "The sum of any two positive integers is a positive integer" into a logical expression using quantifiers.
8. Let n be an integer. Prove that if $3 n+5$ is odd, then n is even.
9. Let n be an integer.
(a) Prove that if n is odd then $2 n+3$ is odd.
(b) Prove that if $7 n+8$ is odd then n is odd.
10. Domain of $x=\{-2,-1,0,1,2\}$. Write out each of these propositions using disjunctions, conjunctions and negations.
(a) $\exists x P(x)$
(b) $\forall x P(x)$
(c) $\rightharpoondown(\forall x P(x))$.

