

New York City College of Technology

Introduction to Calculus

Preparation for MAT 1475: Single Variable Calculus I

Dr. Janet Liou-Mark Dr. Urmi Ghosh-Dastidar Department of Mathematics

Christopher Chan, Yiming Yu, and Karmen Yu

Supported by NSF MSP Grant # 1102729 NSF STEP Grant #0622493 and City Tech Black Male Initiative January 2014

Table on Contents

I.	Finding Limits Graphically and Numerically	1
II.	One-Sided Limits Graphically and Numerically	8
III.	Evaluating Limits Analytically	17
IV.	The Derivative of a Function and Tangent Lines	21
V.	Differentiation Rules	32
VI.	The Derivative of Trigonometric Functions	42
VII.	Implicit Differentiation	47
VIII.	Solutions	51

Section 1: Finding Limits Graphically and Numerically

1. A function f(x) has a limit if the value of f(x) is the same as you approach x from both sides. lim f(x) = L If f(x) equals L as x approaches "a" from the left and right directions.

As x approaches 1 from the left and right directions, the values of f(x) approach 3.

1

NEW YORK CITY COLLEGE OF TECHNOLOGY

2. Create a table with values on both sides of the value x approaches and draw a graph to confirm the limit for each question.

a)
$$\lim_{x \to 5} \frac{x-5}{x^2-2x-15} \approx 125 = \frac{1}{8}$$

x	4.75	4.9	4.99	4.999	5	5.001	5.01	5.1	5.25
f(x)	. 12 9	, 126	.125	. 125	(.12 5	. 125	. 123	. 121

d) $\lim_{x \to -4} \frac{1}{x+4}$

x			- 4		
f(x)					

e) $\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$

x			0		
f(x)					

f)
$$\lim_{x \to 2} \frac{1}{(x-2)^2}$$

x			2		
f(x)					

INTRODUCTION TO CALCULUS I

jump discontinuity

3) Limits That Fail to Exist

a) Behavior that differs from the right and left

Section 2: One-Sided Limits, Infinite Limits, and Continuity

1) One-Sided Limits

Left-hand limit: $\lim_{x \to a^-} f(x)$ means: compute the limit of f(x) as x approaches a from the left **Right-hand limit:** $\lim_{x \to a^+} f(x)$ means: compute the limit of f(x) as x approaches a from the right

Example: The left hand limit: $\lim_{x \to a^-} f(x) = 3$ The right hand limit: $\lim_{x \to a^+} f(x) = 1$

- 2) The $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$. Explain:

3) Infinite Limits

7) Draw a sketch of each of the following infinite limits.

10

8) Find the limits and values.

f(2) = 4 $\lim_{x\to 2^+} f(x) = 4$ $\lim_{x\to 2^-} f(x) = 4$ $\lim_{x\to 2} f(x) = 4$ f(-1) = 2 $\lim_{x\to -1^+} f(x) = 1$ $\lim_{x\to -1^-} f(x) \approx 2$ $\lim_{x \to -1} f(x) \quad DNE$ f(-3) = 3 $\lim_{x\to -3^+} f(x) = -2$ $\lim_{x \to -3^{-}} f(x) = -2$ $\lim_{x\to -3} f(x) \neq -2$ f(1) = undefined $\lim_{x\to 1^+} f(x) > 1$ $\lim_{x\to 1^-} f(x) \leq$ $\lim_{x\to 1} f(x) \mathbf{2}$

9) Find the limits and values.

$$f(2) = -1$$

$$\lim_{x \to 2^{+}} f(x) = 2$$

$$\lim_{x \to 2^{-}} f(x) = -2$$

$$\lim_{x \to 2^{-}} f(x) \text{ DNE}$$

$$f(-1) = 1$$

$$\lim_{x \to -1^{+}} f(x) = 1$$

$$\lim_{x \to -1^{-}} f(x) = 1$$

$$\lim_{x \to -1^{-}} f(x) = 1$$

$$\lim_{x \to -3^{+}} f(x) = 3$$

$$\lim_{x \to -3^{-}} f(x) = 1$$

$$\lim_{x \to -1^{-}} f(x) = 1$$

10) Find the limits and values.

<i>f</i> (7)							1						
$\lim_{x\to 7^+} f(x)$								0			•		
$\lim_{x\to 7^-} f(x)$				_	, , , , , , , , , , , , , , , , , , ,	v	5 -	•		•			
$\lim_{x\to 7} f(x)$		 											
<i>f</i> (5)	10		-	5			0		5				10
$\lim_{x\to 5^+}f(x)$							5 -				-		
$\lim_{x\to 5^-}f(x)$													
$\lim_{x\to 5} f(x)$						-1	0						
f(1)													
$\lim_{x\to 1^+}f(x)$													
$\lim_{x\to 1^-}f(x)$													
$\lim_{x\to 1}f(x)$													
f(-4)													
$\lim_{x \to -4^+} f(x)$													
$\lim_{x\to -4^-} f(x)$													
$\lim_{x\to -4}f(x)$													

11) Find the limits and values.

<i>f</i> (-7)
$\lim_{x\to -7^+} f(x)$
$\lim_{x\to -7^-} f(x)$
$\lim_{x\to -7} f(x)$
<i>f</i> (-6)
$\lim_{x \to -6^+} f(x)$
$\lim_{x \to -6^-} f(x)$
$\lim_{x\to -6} f(x)$
<i>f</i> (-3)
$f(-3)$ $\lim_{x \to -3^+} f(x)$
$f(-3)$ $\lim_{x \to -3^{+}} f(x)$ $\lim_{x \to -3^{-}} f(x)$
$f(-3)$ $\lim_{x \to -3^{+}} f(x)$ $\lim_{x \to -3^{-}} f(x)$ $\lim_{x \to -3^{-}} f(x)$
$f(-3)$ $\lim_{x \to -3^{+}} f(x)$ $\lim_{x \to -3^{-}} f(x)$ $\lim_{x \to -3^{-}} f(x)$ $f(3)$
$f(-3)$ $\lim_{x \to -3^{+}} f(x)$ $\lim_{x \to -3^{-}} f(x)$ $\lim_{x \to -3} f(x)$ $f(3)$ $\lim_{x \to 3^{+}} f(x)$
$f(-3)$ $\lim_{x \to -3^{+}} f(x)$ $\lim_{x \to -3^{-}} f(x)$ $\lim_{x \to -3} f(x)$ $f(3)$ $\lim_{x \to 3^{+}} f(x)$ $\lim_{x \to 3^{-}} f(x)$

12) Sketch the graph of a function f(x) that

at a = -3 shows that f(-3) is not defined,

at a = 2 shows that $\lim_{x \to a} f(x)$ does not exist,

at a = 7 shows that $\lim_{x \to a} f(x) \neq f(7)$, but is continuous elsewhere

NEW YORK CITY COLLEGE OF TECHNOLOGY

14) Continuity at a Point

Section 3: Evaluating Limits Analytically

1) Properties of Limits

Suppose *c* is a constant and the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exists.

Limi	t Propertie	25	Example: Let $f(x) = 2x^2$ and $g(x) = x$
1.	Sum	$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$	lin (2x2+x)= 11- 2x2+ 11m x
2.	Difference	$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$	$\lim_{x \to 0} (2x^2 - x) = \lim_{x \to 0} 2x^2 - \lim_{x \to 0} x$
3.	Scalar multiple	$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$	$x = 32(2x^2) = 32 \frac{1}{x} = 32$
4.	Product	$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \bullet \lim_{x \to a} g(x)$	
5.	Quotient	$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{if } \lim_{x \to a} g(x) \neq 0$	
6.	Power	$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$ where <i>n</i> is a positive integer	
7.		$\lim_{x\to a} c = c$	$\frac{110}{29} = 2431 = 2431$
8.		$\lim_{x \to a} x = a \qquad \qquad \checkmark = \checkmark$	$\lim_{x \to 12} x = 12$
9.		$\lim_{x \to a} x^n = a^n \text{where } n \text{ is a positive integer}$	$x^{1/2} = 2^{3} = 8$
10.		$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a} \text{where } n \text{ is a positive integer}$ If <i>n</i> is even, we assume that a > 0	
11.	Root	$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where <i>n</i> is a positive integer If <i>n</i> is even, we assume that $\lim_{x \to a} f(x) > 0$	

2) Strategies for Finding Limits

Method 1: The Direct Substitution Property is valid for all polynomial and rational functions with nonzero denominators.

Example: Find the limit.

Method 2: Dividing Out Technique - Factor and divide out any common factors

Example: Find the limit.

a)
$$\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5} = \frac{x + 0}{0}$$

if we substitute $x = -5$
 $\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$
 $\lim_{x \to -5} \frac{(x + 5)(x - 2)}{(x + 5)}$
 $= \lim_{x \to -5} (x - 2)$
 $= (-5) - 2 = -7$

Method 3: Rationalizing Technique – Rationalizing the numerator of a fractional expression

Example: Find the limit.

a)
$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x} = \frac{\sqrt{0}}{0}^{1/2}$$

b)
$$\lim_{x \to 0} \frac{\sqrt{3+x}-\sqrt{3}}{x} = \lim_{x \to 0} \left(\frac{\sqrt{3+x}-\sqrt{3}}{x}\right) \left(\frac{\sqrt{3+x}+\sqrt{3}}{\sqrt{3+x}+\sqrt{3}}\right)$$

(A+b) (a-b) = a²-b²
=
$$\lim_{x \to 0} \frac{(\sqrt{3+x})^{2} - (\sqrt{3})^{2}}{x(\sqrt{3+x}+\sqrt{3})}$$

=
$$\lim_{x \to 0} \frac{(\sqrt{3+x}+\sqrt{3})^{2} - (\sqrt{3})^{2}}{x(\sqrt{3+x}+\sqrt{3})}$$

=
$$\lim_{x \to 0} \frac{(\sqrt{3+x}+\sqrt{3})^{2}}{x(\sqrt{3+x}+\sqrt{3})}$$

=
$$\lim_{x \to 0} \frac{(\sqrt{3+x}+\sqrt{3})}{x(\sqrt{3+x}+\sqrt{3})}$$

=
$$\lim_{x \to -1} \frac{(\sqrt{3+x}+\sqrt{3})}{x(\sqrt{3+x}+\sqrt{3})}$$

=
$$\lim_{x \to -1} (-x^{3}+5x^{2})$$

=
$$\lim_{x \to -1} (-x^{3}+5x^{2})$$

=
$$\lim_{x \to -1} \frac{(\sqrt{3}+\sqrt{3}+\sqrt{3})}{\sqrt{3+x}+\sqrt{3}}$$

=
$$\lim_{x \to -1} \frac{(\sqrt{3}+\sqrt{3}+\sqrt{3})}{\sqrt{3+x}+\sqrt{3}}$$

b)
$$\lim_{x \to 6} \sqrt{2x+4}$$

c)
$$\lim_{x \to -1} \frac{x-5}{x^2-3x}$$

d)
$$\lim_{x \to -7} \frac{x-7}{x^2-49}$$

e)
$$\lim_{x \to 5} \frac{x^2 - 3x - 10}{x^2 - 8x + 15}$$

f)
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

g)
$$\lim_{x \to 0} \frac{1}{x} + \frac{1}{5}$$

= $\lim_{x \to 0} \left(\frac{1}{x+5} + \frac{1}{5} + \frac{1$

i)
$$\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4} \qquad \lim_{x \to 0+} \frac{x+10}{5x(x+5)} =$$

$$= \lim_{x \to 0+} \frac{x+10}{5(x+5)} \quad \lim_{x \to 0+} \frac{1}{x}$$

$$= \frac{2}{5} \cdot 00 = 00$$

Section 4: The Derivative of a Function

Calculus is primarily the study of change. The basic focus on calculus is divided in to two categories, Differential Calculus and Integral Calculus. In this section we will introduce differential calculus, the study of rate at which something changes.

Consider the example at which x is to be the independent variable and y the dependent variable. If there is any change Δx in the value of x, this will result in a change Δy in the value of y. The resulting change in y for each unit of change in x remains constant and is called the slope of the line.

The slope of a straight line is represented as:

TANGENT LINES

Calculus is concerned with the rate of change that is not constant. Therefore, it is not possible to determine a slope that satisfies every point of the curve. The question that calculus presents is: "What is the rate of change at the point P?" And we can find the slope of the tangent line to the curve at point P by the method of differentiation. A tangent line at a given point to a plane curve is a straight line that touches the curve at that point.

SECANT LINES

Like a tangent line, a secant line is also a straight line; however a secant line passes through two points of a given curve.

Therefore we must consider an infinite sequence of shorter intervals of Δx , resulting in an infinite sequence of slopes. We define the tangent to be the limit of the infinite sequence of slopes. The value of this limit is called the derivative of the given function.

The slope of the tangent at P =
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

THE DEFINITION OF THE DERIVATIVE THE DIFFERENCE QUOTIENT

To find the slope of the tangent line to the function y = f(x) at, we must choose a point of tangency, (x, f(x)) and a second point (x + h, f(x + h)), where $h = \Delta x$.

The derivative of a function f at x is defined as:

 $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$

Consider the example where the function f(x) = 7x + 11. Find f'(x) by using the definition of the derivative.

$$f(x) = 7x + 11$$

 $f(x + h) = 7(x + h) + 11$

Now by the definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{7(x+h) + 11 - (7x+11)}{h}$$
$$f'(x) = \lim_{h \to 0} \frac{7x + 7h + 11 - 7x - 11}{h}$$
$$f'(x) = \lim_{h \to 0} \frac{7h}{h}$$
$$f'(x) = \lim_{h \to 0} (7)$$
$$f'(x) = 7$$

Therefore the derivative of f(x) is 7.

Consider the example where the function $g(x) = 3x^2 + 6x - 9$. Find g'(x) by using the definition of the derivative.

$$g(x) = 3x^2 + 6x - 9$$

$$g(x+h) = 3(x+h)^2 + 6(x+h) - 9$$

Now by the definition of the derivative:

$$g'(x) = \lim_{h \to 0} \frac{3(x+h)^2 + 6(x+h) - 9 - (3x^2 + 6x - 9)}{h}$$

$$g'(x) = \lim_{h \to 0} \frac{3(x^2 + 2xh + h^2) + 6x + 6h - 9 - 3x^2 - 6x + 9}{h}$$

$$g'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 + 6x + 6h - 9 - 3x^2 - 6x + 9}{h}$$

$$g'(x) = \lim_{h \to 0} \frac{6xh + 3h^2 + 6h}{h}$$

$$g'(x) = \lim_{h \to 0} (6x + 3h + 6)$$

$$g'(x) = 6x + 3(0) + 6$$

$$g'(x) = 6x + 6$$

Therefore the derivative of g(x) is 6x + 6.

3) Find the derivative of the following functions using the definition of derivative.

a)
$$f(x) = 3x^2 - 4x$$

b)
$$g(x) = \sqrt{1-5x}$$

_

c)
$$h(y) = \frac{6y}{y+1}$$

d)
$$p(x) = \sqrt{x} + x$$

e)
$$k(t) = \frac{1}{t^2}$$

4) What does derivative of f(x) mean graphically?

Answer: It is the slope (*m*) of the tangent line of the graph y = f(x) at the point (x, y)

The slope of the tangent line is given by

 $m_{\tan gent} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{(x+h) - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$ if this limit exists.

This is actually the derivative of f(x).

5) Find the slope of the tangent line to the curve $f(x) = x^2 + 2$ at the point (-1,3) using the definition of the derivative, and find the equation of the tangent line.

By definition, the slope of the tangent line at any point is given by f'(x).

Therefore f'(x) equals to the following:

$$m = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$m = \lim_{h \to 0} \frac{((x+h)^2 + 2) - (x^2 + 2)}{h}$$

$$m = \lim_{h \to 0} \frac{(x^2 + 2xh + h^2 + 2) - x^2 - 2}{h}$$

$$m = \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$m = \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$m = \lim_{h \to 0} (2x+h)$$

$$m = 2x + 0$$

$$m = 2x$$

Now this is the slope of the tangent at a point (x, f(x)) of the graph. Since the line is tangent at (-1,3), we have to evaluate m at (-1,3). Therefore, m = 2(-1) = -2. The slope of the tangent at (-1,3) is -2.

To find the equation of the tangent line to the curve $f(x) = x^2 + 2$ use the point-slope formula to find the equation:

$$y-(3) = -2(x-(-1))$$

 $y-3 = -2x-2$
 $y = -2x+1$

The equation of the tangent is y = -2x + 1.

6) Find the slope of the tangent line to the curve $f(x) = -3x^2 + x$ at the point (2,-10) using the definition of the derivative, and find the equation of the tangent line.

7) Find the slope of the tangent line to the curve $f(x) = x^3$ at the point (-2, -8) using the definition of the derivative, and find the equation of the tangent line.

8) Find the slope of the tangent line to the curve $f(x) = \frac{1}{x-6}$ at the point (5,-1) using the definition

of the derivative, and find the equation of the tangent line.

Section 5: Differentiation Rules

1) The Differentiation Formulas

1.	Derivative of a Constant Function	$\frac{d}{dx}(c) = 0$
2.	The Power Rule	$\frac{d}{dx}(x^{n}) = nx^{n-1}$ where <i>n</i> is any real number
3.	The Constant Multiple Rule	$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$
4.	The Sum Rule	$\frac{d}{dx}[f(x)+g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
5.	The Difference Rule	$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$
6.	The Product Rule	$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$ or in prime notation
		(fg)' = fg' + gf'
7.	The Quotient Rule	$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{[g(x)]^2}$
		or in prime notation
		$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$
8.	The Chain Rule	$\frac{d}{dx}[f(g(x))] = \frac{d}{dx}[f(g(x))]\frac{d}{dx}g(x)$

2) Examples:

NEW YORK CITY COLLEGE OF TECHNOLOGY

1. Derivative of a Constant Function

$$\frac{d}{dx}(c) = 0$$

 a) $f(x) = 60$
 b) $y = \frac{8800^{718}}{369} + \frac{40\pi}{47} - 62768.32$

2. The Power Rule
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 where *n* is any real number
c) $y = x^5$ d) $g(x) = 3x^{-6}$

3. The Constant Multiple Rule
$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$$

e) $y = -4x$ f) $p(x) = 3x^7$

4. The Sum Rule
$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

g) $y = 2x^{\frac{1}{2}} + 4x^{\frac{2}{3}}$ h) $t(x) = 2x^{-5} + 4x + 1$

5. The Difference Rule
$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$$

i) $y = -2x^{-4} - 5x^2 - 7x$ j) $h(x) = 4x^{-7} - 3x^{-1}$

6.	The Product Rule	$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$
		or in prime notation $(fg)' = fg' + gf'$

k)
$$y = x^4(2x+3)$$

 I) $a(x) = (3x-7)(x^2+6x)$

7. The Quotient Rule
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$
or in prime notation $\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2}$

m)
$$y = \frac{x}{3x+1}$$
 n) $q(x) = \frac{9x^2}{3x^2 - 2x}$

3) Find the derivative of the following functions:

a)
$$f(x) = 5x^{-3} + 3x^{-6} - 2$$

b)
$$y = 6\sqrt{x} - \sqrt[3]{x}$$

c) h(t) = (4t+3)(t-7)

d)
$$p(x) = \frac{x+5}{x^2-9}$$

e)
$$s(t) = t^2 + \frac{5}{t^2}$$

f)
$$y = \frac{x^3 - 4x^2 + 8}{x^2}$$

g)
$$m(x) = x^{\frac{-3}{2}} + 3x^{\frac{1}{6}}$$

h)
$$y = -4x^2(2x^3 - 14)^4$$

i)
$$f(x) = \frac{5x^2 - 2x + 1}{x}$$

$$y = \frac{2}{\sqrt[3]{x}} + 9x$$

k)
$$v(x) = -x^3(2-4x)^{100}$$

4)

a) Find the slope of the tangent line to the curve $f(x) = -3x^2 + x$ at the point (2,-10) using the differentiation formulas, and find the equation of the tangent line.

b) Find the slope of the tangent line to the curve $f(x) = x^3$ at the point (-2,-8) using the differentiation formulas, and find the equation of the tangent line.

c) Find the slope of the tangent line to the curve $f(x) = \frac{1}{x-6}$ at the point (5,-1) using the

differentiation formulas, and find the equation of the tangent line.

Section 6: The Derivative of Trigonometric Functions

1.	Sine	$\frac{d}{dx}\sin(x) = \cos\left(x\right)$
2.	Cosine	$\frac{d}{dx}\cos(x) = -\sin(x)$
3.	Tangent	$\frac{d}{dx}\tan(x) = \sec^2(x)$
4.	Cosecant	$\frac{d}{dx}\cot(x) = -\csc^2(x)$
5.	Secant	$\frac{d}{dx}\sec(x) = \sec(x)\tan(x)$
6.	Cotangent	$\frac{d}{dx}\csc(x) = -\csc(x)\cot(x)$

Example: Find the derivative of the trigonometric function $f(x) = 2x^3 \cos(x)$ using the rules of differentiation.

A derivative that requires the Product Rule

$$\frac{d}{dx}(2x^3\cos(x)) = \left[\frac{d}{dx}(2x^3)\right]\cos(x) + 2x^3\left[\frac{d}{dx}\cos(x)\right]$$

Therefore, the derivative of the function f(x) is $6x^2 \cos(x) - 2x^3 \sin(x)$.

2) Find the derivative of the following trigonometric functions using the rules of differentiation.

a)
$$y = 7\sin(x) - x$$

b) $r(x) = x\cos(2x^2)$

c)
$$g(x) = \tan(\frac{3x}{4})$$

d)
$$y = \frac{\cos(x)}{2\sin(-3x)}$$

e)
$$n(x) = 5\cos^3(x) - \sin(2x)$$

f) $y = \sqrt{\sin^2(x) + 5}$

g) $v(x) = \tan(\sqrt{x^3 + 2})$

h)
$$g(x) = 2x^2 \sec^2(8x)$$

i) $f(x) = 3x^2 \sin(x) \sec(5x)$

j) Given
$$f(x) = \tan(x)$$
 and $g(x) = \sec^2(x)$. Show $\frac{d}{dx}f(x) = g(x)$.

Section 7: Implicit Differentiation

IMPLICIT DIFFERENTIATON

Consider the two equations:

$$y = x^2 - 5$$
 and $x^2 + y^2 = 4$

The first equation defines y as a function of x explicitly. For each value of x, the equation returns an explicit formula y = f(x) for finding the corresponding value of y. However, the second equation does not define a function, as it fails the vertical line test. If we look at a general case, consider the example:

$$x^2 + y^2 = r^2$$

This is an equation of a circle with the radius r. In order for us to solve for the derivative $\frac{dy}{dx}$, we may treat y as a function of x and apply the chain rule. This process is called implicit differentiation. $x^2 + y^2 = r^2$

$$\frac{dy}{dx}x^{2} + \frac{dy}{dx}y^{2} = \frac{dy}{dx}r^{2}$$
$$2x + 2y\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{x}{y}$$

The derivative of an implicit function g(y) is defined as

$$\frac{d}{dx}g(y) = g'(y)y'(x)$$

Example: Find y'(x) for $x^2y^2 - 2x = 4 - 4y$ using the method of implicit differentiation.

$$\frac{d}{dx}(x^2y^2 - 2x) = \frac{d}{dx}(4 - 4y)$$

$$2xy^2 + x^2(2y)y'(x) - 2 = -4y'(x)$$

$$(2xy^2 + 4)y'(x) = 2 - 2xy^2$$

$$y'(x) = \frac{(2 - 2xy^2)}{2x^2y + 4}$$

- 1) Find the derivative y'(x) using the method of implicit differentiation for the following.
 - a) $x^5 + y^4 = 9$

b) $5\sqrt{y} + \sqrt{2x} = 4$

c)
$$xy - 3y = x$$

d) $2x^3y + 6y = 1 - 2x$

e)
$$\sqrt{yx} - 3y^3 = 20$$

f)
$$\sin(y) - y^2 = 15$$

g) $\sqrt{2x+y} - 5x^2 = y$

h) $\tan(5y) - xy^2 = 3x$

7. Answers may vary.

VA @ x = 2, HA @ y = 0

INTRODUCTION TO CALCULUS I

8.	f(2) = 4	9.	f(2) = -1	10.	f(7) = 7	11.	f(-7) = -1
	$\lim_{x \to 2^+} f(x) = 4$		$\lim_{x \to 2^+} f(x) = 2$		$\lim_{x \to 7^+} f(x) = -1$		$\lim_{x \to -7^+} f(x) = -1$
	$\lim_{x \to 2^-} f(x) = 4$		$\lim_{x \to 2^-} f(x) = -2$		$\lim_{x \to 7^-} f(x) = -1$		$\lim_{x \to -7^-} f(x) = -1$
	$\lim_{x\to 2} f(x) = 4$		$\lim_{x\to 2} f(x) = DNE$		$\lim_{x \to 7} f(x) = -1$		$\lim_{x \to -7} f(x) = -1$
	f(-1) = 2		f(-1) = 1		f(5) = 3		f(-6) = undefined
	$\lim_{x \to -1^+} f(x) = 1$		$\lim_{x \to -1^+} f(x) = 1$		$\lim_{x \to 5^+} f(x) = -5$		$\lim_{x \to -6^+} f(x) = 3$
	$\lim_{x \to -1^-} f(x) = 2$		$\lim_{x \to -1^-} f(x) = 1$		$\lim_{x \to 5^-} f(x) = 3$		$\lim_{x \to -6^-} f(x) = -\infty$
	$\lim_{x \to -1} f(x) = DNE$		$\lim_{x \to -1} f(x) = 1$		$\lim_{x\to 5} f(x) = DNE$		$\lim_{x \to -6} f(x) = DNE$
	f(-3) = 3		f(-3) = 1		f(1) = 3		f(-3) = 3
	$\lim_{x \to -3^+} f(x) = -2$		$\lim_{x \to -3^+} f(x) = 3$		$\lim_{x \to 1^+} f(x) = 3$		$\lim_{x \to -3^+} f(x) = 3$
	$\lim_{x \to -3^-} f(x) = -2$		$\lim_{x \to -3^-} f(x) = 1$		$\lim_{x \to 1^-} f(x) = 6$		$\lim_{x \to -3^-} f(x) = 3$
	$\lim_{x \to -3} f(x) = -2$		$\lim_{x \to -3} f(x) = DNE$		$\lim_{x \to 1} f(x) = DNE$		$\lim_{x \to -3} f(x) = 3$
	f(1) = undefined		f(1) = undefined		f(-4) = 3		f(3) = 6
	$\lim_{x \to 1^+} f(x) = 1$		$\lim_{x \to 1^+} f(x) = -1$		$\lim_{x \to -4^+} f(x) = 6$		$\lim_{x \to 3^+} f(x) = 6$
	$\lim_{x \to 1^-} f(x) = 1$		$\lim_{x \to 1^-} f(x) = -1$		$\lim_{x \to -4^-} f(x) = 3$		$\lim_{x\to 3^-} f(x) = -3$
	$\lim_{x \to 1} f(x) = 1$		$\lim_{x \to 1} f(x) = -1$		$\lim_{x \to -4} f(x) = DNE$		$\lim_{x\to 3} f(x) = -3$

12. Answers may vary. **13.** Answers may vary.

Section 2

- 2. Answers may vary. Sample response: **"A limit exists if and only if the left-hand and right-hand limit exists."**
- 7. Answers may vary. 12. Answers may vary. 13. Answers may vary.

Section 3 (*Answers may vary depending on constant)											
1.1.	$\lim_{x \to a} (2x)$	$(x^2 + x)$	$= \lim_{x \to a} z$	$2x^2 + \frac{1}{2}$	$\lim_{x \to a} x$	1.2.	$\lim_{x \to a} (2x)$	$(x^2 - x)$	$= \lim_{x \to a} 2$	$2x^2 - l_x$	$\lim_{x \to a} x$
1.3	$ \lim_{x \to a} (12.86(2x^2)) = 12.86 \lim_{x \to a} (2x^2) $				²)	1.4 $\lim_{x \to a} (2x^2 \cdot x) = \lim_{x \to a} 2x^2 \cdot \lim_{x \to a} x$				$x^2 \cdot \lim_{x \to a} x$	
1.5	$\lim_{x \to a} \left(\frac{2x}{x}\right)$	$\left(\frac{x^2}{x}\right) =$	$\lim_{x \to a} 2x$ $\lim_{x \to a} x$	2		1.6	$\lim_{x\to a}(2x)$	$(2^2)^5 =$	$\left(\lim_{x\to a} (2x)\right)$	$(x^2)\Big)^5$	
1.7.	* $\lim_{x\to a} \pi$	$=\pi$	1.8.	* $\lim_{x \to e} x$	= e	1.9.	* $\lim_{x\to 6} x$	$^{3} = 6^{3}$	= 216		
1.10.	* $\lim_{x \to 32} \frac{5}{2}$	$\sqrt[5]{x} = \frac{1}{2}$	√32 =	2	1.11.	* $\lim_{x\to a} \sqrt[5]{}$	$2x^2 =$	$\sqrt[5]{\lim_{x \to a}}$	$2x^{2}$		
2.1.a.	1681	2.1.b.	0	2.2.a.	-7	2.2.b.	7	2.3.a.	$\frac{1}{2}$	2.3.b.	$\frac{\sqrt{3}}{6}$
3.a.	144	3.b.	4	3.c.	$-\frac{3}{2}$	3.d.	DNE	3.e.	$\frac{7}{2}$	3.f.	12
3.g.	DNE	3.h.	$\frac{\sqrt{6}}{12}$		L				L		
Section 4											
3.a.	6 <i>x</i> – 4	ł	3.b.	$-\frac{1}{2\sqrt{2}}$	5 1-5 <i>x</i>	3.c.	$\frac{6}{(y+1)^2}$	2	3.d.	$\frac{1}{2\sqrt{x}}$ +	- 1
3.e.	$-\frac{2}{4^3}$										
6.	deriva	tive: f'	(x) = -	-6x + 3	1	slope:	-11	tanger	t: $y = -$	-11 <i>x</i> +	- 12
7.	deriva	tive: f'	(x) = -	$-3x^{2}$	_	slope:	12	tanger	f: y = 1	12x + 1	16
8.	deriva	tive: f'	(x) = -	-(x - 6)	$(5)^{-2}$	slope:	-1	tanger	$ht: y = \cdot$	-x + 4	
<u>Section 5</u> (Note: Equivalent solutions may be calculated, depending on rules applied.) 2.1.a. 0 2.1.b. 0 2.2.c. $5x^4$ 2.2.d. $-18x^{-7}$ 2.3.e. -4 2.3.f. $21x^6$											
2.4.g.	$x^{-\frac{1}{2}} + \frac{1}{2}$	$\frac{8}{3}x^{-\frac{1}{3}}$	2.4.h.	4 - 10	$)x^{-6}$	2.5.i.	$8x^{-5}$ –	- 10 <i>x</i> –	- 7	2.5.j.	$3x^{-2} - 28x^{-8}$
2.6.k.	$10x^{4}$ -	⊦ 12 <i>x</i> ³	2.6.l.	$9x^2 +$	$22x - \frac{1}{2}$	42	2.7.m.	$\frac{1}{(2m+1)}$	12	2.7.n.	$-\frac{18}{(2\pi - 2)^2}$
2.8.o.	$16x(x^2)$	$(^{2} + 3)^{7}$	2.8.p.	10000	(5x - 5)	500) ⁹⁹⁹		(3x+1)	.)-		$(3x-2)^2$
		-	-			ŗ					
3.a.	$-15x^{-1}$	⁻⁴ – 18	<i>x</i> ⁻⁷	3.b.	$3x^{-\frac{1}{2}}$ -	$-\frac{1}{3}x^{-\frac{2}{3}}$	3.c.	8t - 2	5	3.d.	$-\frac{x^2+10x+9}{(x^2-9)^2}$
3.e.	2t - 1	$0t^{-3}$	3.f.	1 – 16	$5x^{-3}$	3.g.	$\frac{1}{2}x^{-\frac{5}{6}}$ -	$-\frac{3}{2}x^{-\frac{5}{2}}$			
3.h.	-896 <i>x</i>	$x(x^3 - x^3)$	$(x^3)^3(x^3)$	- 1)	3.i.	$5 - x^{-1}$	2	3.j.	$9 - \frac{2}{2}x$	$-\frac{4}{3}$	
3.k.	$2^{100}x^2$	² (206 <i>x</i>	- 3)(1	$(-2x)^{9}$	99				3		
4.a. 4.b. 4.c.	deriva deriva deriva	tive: f' tive: f' tive: f'	(x) = - (x) = - (x) = -	-6x + 6x +	1 5) ⁻²	slope: slope: slope:	-11 12 -1	tanger tanger tanger	$\begin{array}{l} \text{nt: } y = \\ \text{nt: } y = \\ \text{nt: } y = \end{array}$	-11x + 12x	- 12 16

<u>Section 6</u>

2.a.
$$y' = 7\cos(x) - 1$$
 2.b. $r'(x) = \cos(2x^2) - 4x^2\sin(2x^2)$
2.c. $g'(x) = \frac{3}{4}\sec^2\left(\frac{3x}{4}\right)$ 2.d. $y' = \frac{\sin(x)\sin(3x) + 3\cos(3x)\cos(x)}{2\sin^2(3x)}$
2.e. $n'(x) = 15\cos^2(x)\sin(x) - 2\cos(2x) = \frac{15}{2}\cos(x)\sin(2x) - 2\cos(2x)$
2.f. $y' = \frac{\sin(x)\cos(x)}{\sqrt{\sin^2(x)+5}} = \frac{\sin(2x)}{2\sqrt{\sin^2(x)+5}}$ 2.g. $v'(x) = \frac{3x^2\sec^2(\sqrt{x^3+2})}{2\sqrt{x^3+2}}$
2.h. $g'(x) = 4x\sec^2(8x) + 32x^2\sec^2(8x)\tan(8x)$
2.i. $f'(x) = 6x\sin(x)\sec(5x) + 3x^2\cos(x)\sec(5x) + 15x^2\sin(x)\sec(5x)\tan(5x)$
2.j. Answers may vary.
Suggested ideas include quotient rule using $\tan(x) = \frac{\sin(x)}{\cos(x)}$ or use limit definition of $f'(x)$ using angle sum identities.

Section 7

1.a.
$$-\frac{5x^4}{4y^3}$$
 1.b. $-\frac{\sqrt{2xy}}{5x}$ 1.c. $\frac{1-y}{x-3}$ 1.d. $-\frac{3x^2y+1}{x^3+3}$
1.e. $\frac{(18y^3\sqrt{xy}+xy)}{324xy^5-x^2}$ 1.f. $0, y \in \{y \in \mathbb{R} : \cos(y) \neq 2y\}$ 1.g. $\frac{20x\sqrt{2x+y}-2}{1-2\sqrt{2x+y}}$
1.h. $\frac{y^2+3}{5\sec^2(5y)-2xy}$