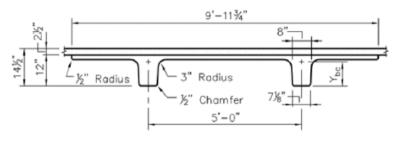

Pre-Cast Concrete Structure : Double Tees + Single Tees

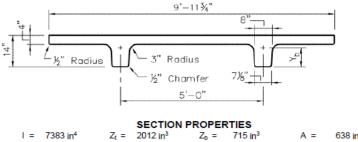
Stevenson . Trishita . Lennart Prof. Aptekar . Prof. Portelli

Double Tees + Single Tees : Maximum Span

- Typical span to depth ratios:


- The precast concrete components often are topped with 2" concrete.
- The Tees are supplied with a standard broom finish.
- http://www.youtube.com/watch?v=HLnV-fdf9kQ

Double Tees + Single Tees : Different Types of Spans



ALLOWABLE SUPERIMPOSED LOAD (in pounds per square foot)

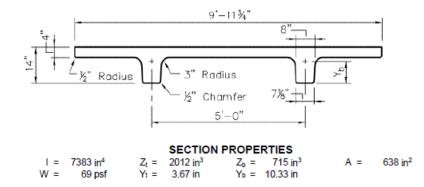
SIMPLE SPAN (in feet)																
Number of ½" Ø strands per tee	20	22	24	26	28	30	32	34	36							
4 (straight)	96	65	38													
4 (harped)	107	78	49	27												
6 (straight)	141	99	67	41	22											
6 (harped)	181	137	99	69	45	26										
8 (harped)	247	190	143	107	78	55	36	20								
10 (harped)	304	234	181	139	105	78	56	38	23							

NOTES:

1. The standard top flange reinforcement is WWF 8x4-W2.9W2.9, and the maximum safe uniform load on the flange with this reinforcement, without the topping, is 80 psf. The maximum safe concentrated load without the topping is 500 lbs.

1 =	7383 in ⁴	$Z_t =$	2012 in ³	$Z_b = 715 \text{ in}^3$	A =	638 in ²
W =	69 psf	Yt =	3.67 in	Y _b = 10.33 in		

ALLOWABLE SUPERIMPOSED LOAD (in pounds per square foot)


SIMPLE SPAN (in feet)																
Number of ½" Ø strands per tee	20	22	24	26	28	30	32	34	36	38	40					
4 (straight)	96	69	49	33	21											
4 (harped)	107	78	57	40	26											
6 (straight)	149	113	86	64	45	30										
6 (harped)	180	139	108	83	63	46	32	20								
8 (harped)	247	192	151	118	92	71	54	40	28							
10 (harped)	299	235	186	148	118	94	74	58	44	32	22					

The minimum top flange reinforcement is WWF 4x4-W2.9/W2.9, and the maximum safe uniform load on the flange with minimum reinforcement is 180 psf. Additional flange reinforcement will be required for loads in excess of 180 psf.

Topped Thin Flange

Un-topped Thin Flange

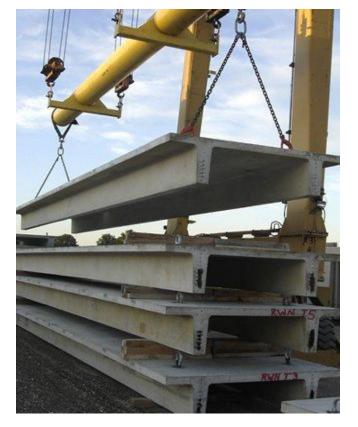
ALLOWABLE SUPERIMPOSED LOAD (in pounds per square foot)

SIMPLE SPAN (in feet)																
Number of ½" Ø strands per tee	20	22	24	26	28	30	32	34	36	38	40					
4 (straight)	96	69	49	33	21											
4 (harped)	107	78	57	40	26											
6 (straight)	149	113	86	64	45	30										
6 (harped)	180	139	108	83	63	46	32	20								
8 (harped)	247	192	151	118	92	71	54	40	28							
10 (harped)	299	235	186	148	118	94	74	58	44	32	22					

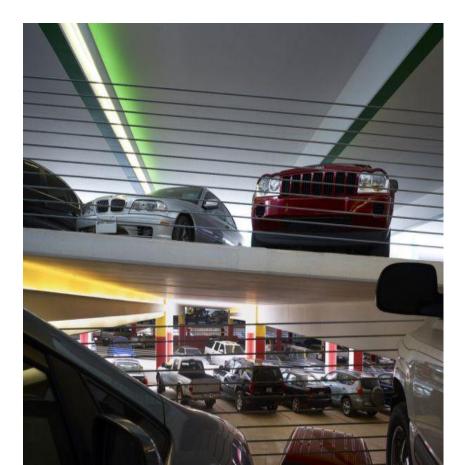
NOTES:

 The minimum top flange reinforcement is WWF 4x4-W2.9/W2.9, and the maximum safe uniform load on the flange with minimum reinforcement is 180 psf. Additional flange reinforcement will be required for loads in excess of 180 psf.

Un-topped Thick Flange


- Low initial project costs and little maintenance.
- Double and Single Tees are plant-fabricated.
- Provides excellent quality control and speeds up the construction process.
- Precast Double and Single Tees are extremely durable.

- Double and Single Tees are typically seen being used for bridges.
- Since the precast structure allows long spans, it is being used as floor and ceiling components.
- Various stadium and pools use precast structural pieces like double and single tees.

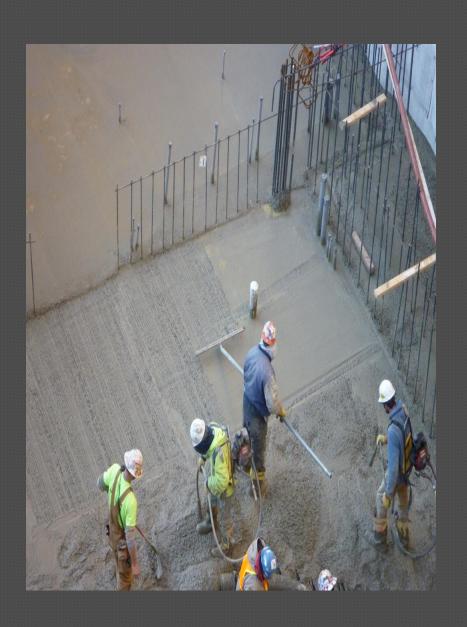


Double Tees + Single Tees : Precedent

Car Park One

Architects: Elliot + Associates Architects

Location: Oklahoma City, OK Project Area: 298,907 sq ft. Project Year: 2008

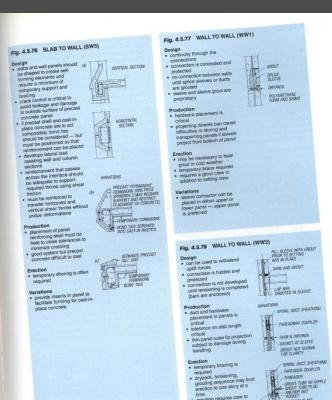


FINISHES AND CONNECTION DETAILS

SMOOTH/ HARD

BROOMED FINISH

BROOMED SWIRL FINISH


PAINT

DETAILS DETAILS

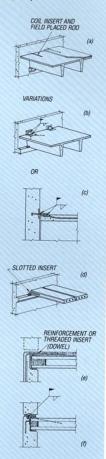
Design Individual control of the state of t

GROUT NOT SHOWN FOR CLARITY

DETAILS

Fig. 4.5.72 SLAB TO WALL (SW1)

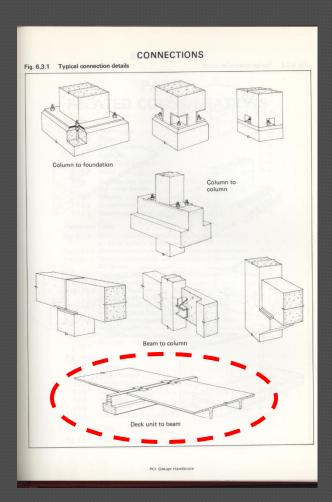
- Design
 welding at bottom of slab is not recommended as excess restraint results
- no moment capacity
 must consider eccentricity of loads
- top connection transfers horizontal shear forces or provides nominal torsion restraint for spandrel

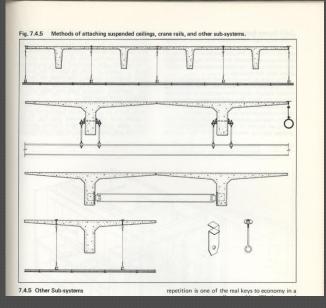

Production

- special forming required for corbel
- corbel may be precast and set in form

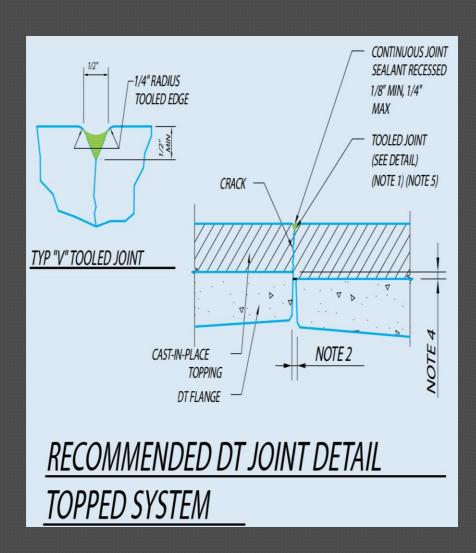
Erection

- quick and easy
 allows adequate tolerances
 temporary bracing may be

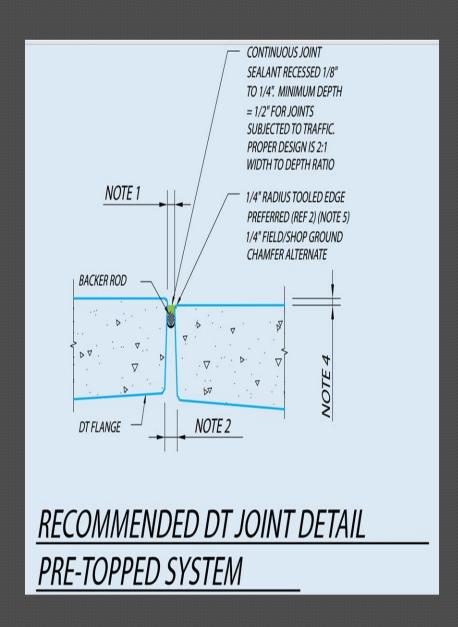

- Variations
 steel corbel; may use inserts in panel to position angle
- while welding
 flag shaped plate (g) welded to embedded plate in wall can be used in hollow-core
- joints variation of (d) and (g), dowel may be in topping



DETAILS


DECK UNIT TO BEAM

ATTACHING SUSPENDED CLNG.



SEALANT JOINT DETAIL

SEALANT JOINT DETAIL

