

Arch 1240 Methods of Construction in Architecture
Professor Jason Montgomery

New York City College of Technology

City University of New York

Department of Architectural Technology

ARCH 1240 - METHODS OF CONSTRUCTION IN ARCHITECTURE

2 CREDITS

2 Classroom Hours

Prerequisites: CUNY Reading and Writing Certification

Pre or Co-Requisite: ENG 1101

Course Description:

This course will study:

Contemporary Building Components

Methods of Construction

Systems Analysis

Current Structural Innovations.

Course Policies:

1. Attendance

- a. Class Time 10am 11:40am Tuesdays
- b. Late Arrival Policy 5 minutes late arrival or more will be recorded. 10 minutes late arrival total = 1 absence
- c. Missing Class: 2 absences or more will expose the student to a failing grade at the discretion of the instructor.

2. Grading

a. Weekly Quizzes	30%
b. Sketch Assignment	15%
c. Research Project and Model	20%
d Research Project Oral Presentation	5%
e Final Exam	30%

Course Policies:

3. Grading Exception

There will be 12 quizzes total. The quiz scoring will be based on the top 10 scores. If a student scores 93 or higher, they will be exempt from the final and the grading will be reapportioned as follows:

a. Weekly Quizzes	60%
b. Sketch Assignment	15%
c. Research Project and Model	20%
d Research Project Oral Presentation	5%

Course Policies:

3. Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions and other intellectual property owe their audience and sources accuracy and honesty in using, crediting and citation of sources.

As a community of intellectual and professional workers, the college recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity.

Accordingly, academic dishonesty is prohibited in The City University of New York and is punishable by penalties, including failing grades, suspension and expulsion.

ARCH 1240

Course Requirements:

4. Required Text

<u>Fundamentals of Building Construction Materials and Methods</u>

Edward Allen, Joseph Iano, John Wiley & Sons, Inc.

Course Requirements:

5. Quiz Protocol

Weekly Quizzes will be conducted on Blackboard. Blackboard must be accessed through Firefox web browser to work properly.

A practice quiz will be available by Wednesday at 10pm. Please take this practice quiz by Saturday 10pm this week. Quiz #1 will be available Sunday-Tuesday next week. Report any problems encountered to my email address:

jmontgomery@citytech.cuny.edu

Learning Objectives:

Upon the successful completion of this course, students shall be able to:

- 1. Explain how zoning and building codes affect material selection and architectural design.
- 2. Explain the various foundation systems and related site work currently used including underpinning, piles, spread footings, retaining walls, caissons, slurry wall, tiebacks

Learning Objectives:

Upon the successful completion of this course, students shall be able to:

3. Describe the various materials used in current construction to insure a totally waterproof, code compliant structure.

Materials will include siding, cladding, roofing, glass and glazing, doors, insulation types, waterproofing, interior finishes, and millwork.

Learning Objectives:

Upon the successful completion of this course, students shall be able to:

- 4. Demonstrate a broad general architectural vocabulary of the current architectural materials available.
- 5. Design a staircase and a fireplace to meet code requirements

Assessment:

Students will be given weekly quizzes and a final exam to test their ability to:

- 1. Cite the key factors associated in selecting a specific building material
- 2. Explain what is meant by each of the "key terms and concepts" listed at the end of each chapter of the assigned text.

Assessment:

Students will be given weekly quizzes and a final exam to test their ability to:

- 4. Design and draw a plan / section of a code compliant commercial staircase given a floor to floor height. Identify all the key components and show all the calculations.
- 5. Draw a section through a fireplace and identify all the key components

Assessment:

Students will be given weekly quizzes and a final exam to test their ability to:

3. Draw sketches or sections of the different materials and building systems discussed:

underpinning, piles, eave section, parapet details, roof decking, window head and jamb, siding, roofing types, scupper, suspended ceiling, raised floor, etc.

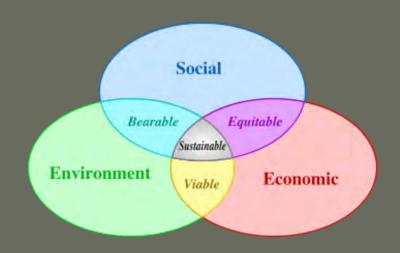
Project Research:

Initial Assignment:

Choose a Building in your neighborhood or along your daily commute as a case study.

Upload Photos to Discussion Board Forum by:

Monday Feb 15, 2010


Health of Us and Our Planet

ARCH 1240

Sustainability Building "Green"

"Meeting the needs of the present generation without compromising the ability of future generations to meet their needs."

Standards:

LEED Program: USGBC

Leadership in Energy and Environmental Design

US Green Building Council

Energy: Buildings account for 30 to 40 percent of world's energy use and associated greenhouse gas emissions

Construction and Operation of Buildings in the US: 1/3 total energy use 2/3 electricity consumption

Sustainability starts with land planning:

Suburban Sprawl:

- Consumes agricultural and undeveloped sites
- Degrades natural ecosystems
- Relies largely on vehicular transportation
- Inefficient infrastructure
- Unsustainable WaterSupply / Demand

Sustainability / LEED NC Check List

Project Checklist

Sustainable	e Sites	14 Possible Points
Prereq 1	Construction Activity Pollution Prevention	Required
Credit 1	Site Selection	
Credit 2	Development Density & Community Connectivity	
Credit 3	Brownfield Redevelopment	
Credit 4.1	Alternative Transportation, Public Transportation Access	
Credit 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms	
Credit 4.3	Alternative Transportation, Low Emitting & Fuel Efficient Vehicles	5
Credit 4.4	Alternative Transportation, Parking Capacity	
Credit 5.1	Site Development, Protect or Restore Habitat	
Credit 5.2	Site Development, Maximize Open Space	
Credit 6.1	Stormwater Design, Quantity Control	
Credit 6.2	Stormwater Design, Quality Control	
Credit 7.1	Heat Island Effect, Non-Roof	
Credit 7.2	Heat Island Effect, Roof	
Credit 8	Light Pollution Reduction	:
Water Effic	iency	5 Possible Points
Credit 1.1	Water Efficient Landscaping, Reduce by 50%	
Credit 1.2	Water Efficient Landscaping, No Potable Use or No Irrigation	
Credit 2	Innovative Wastewater Technologies	
Credit 3.1	Water Use Reduction, 20% Reduction	
Credit 3.2	Water Use Reduction, 30% Reduction	
Energy & A	tmosphere	17 Possible Points
Prereq 1	Fundamental Commissioning of the Building Energy Systems	Required
Prereg 2	Minimum Energy Performance	Required
Prereq 3	Fundamental Refrigerant Management	Required
Credit 1	Optimize Energy Performance	1-10
Credit 2	On-Site Renewable Energy	1-
Credit 3	Enhanced Commissioning	
Credit 4	Enhanced Refrigerant Management	
Credit 5	Measurement & Verification	
Credit 6	Green Power	:
Materials 8	Resources	13 Possible Point
Prereq 1	Storage & Collection of Recyclables	Required
Credit 1.1	Building Reuse, Maintain 75% of Existing Walls, Floors & Roof	
Credit 1.2	Building Reuse, Maintain 95% of Existing Walls, Floors & Roof	
Credit 1.3	Building Reuse, Maintain 50% of Interior Non-Structural Element	s
Credit 2.1	Construction Waste Management, Divert 50% from Disposal	

	Construction Waste Management, Divert 75% from Disposal	
Credit 3.1	Materials Reuse, 5%	
Credit 3.2	Materials Reuse, 10%	
Credit 4.1	Recycled Content, 10% (post-consumer + 1/2 pre-consumer)	
Credit 4.2	Recycled Content, 20% (post-consumer + 1/2 pre-consumer)	
Credit 5.1	Regional Materials, 10% Extracted, Processed & Manufacture	d Regionally
Credit 5.2	Regional Materials, 20% Extracted, Processed & Manufacture	d Regionally
Credit 6	Rapidly Renewable Materials	
Credit 7	Certified Wood	
Indoor Envir	ronmental Quality	15 Possible Points
Prereq 1	Minimum IAQ Performance	Required
Prereq 2	Environmental Tobacco Smoke (ETS) Control	Required
Credit 1	Outdoor Air Delivery Monitoring	
Credit 2	Increased Ventilation	
Credit 3.1	Construction IAQ Management Plan, During Construction	
Credit 3.2	Construction IAQ Management Plan, Before Occupancy	
Credit 4.1	Low-Emitting Materials, Adhesives & Sealants	
Credit 4.2	Low-Emitting Materials, Paints & Coatings	1
Credit 4.3	Low-Emitting Materials, Carpet Systems	3
Credit 4.4	Low-Emitting Materials, Composite Wood & Agrifiber Product	is :
Credit 5	Indoor Chemical & Pollutant Source Control	
Credit 6.1	Controllability of Systems, Lighting	
Credit 6.2	Controllability of Systems, Thermal Comfort	
Credit 7.1	Thermal Comfort, Design	:
Credit 7.2	Thermal Comfort, Verification	
Credit 8.1	Daylight & Views, Daylight 75% of Spaces	
Credit 8.2	Daylight & Views, Views for 90% of Spaces	1
Innovation i	& Design Process	5 Possible Points
Credit 1.1	Innovation in Design	
Credit 1.2	Innovation in Design	
Credit 1.3	Innovation in Design	:
Credit 1.4	Innovation in Design	:
Credit 2	LEED Accredited Professional	1
	le	69 Possible Points
Project Tota	15	

Factors contributing to a Building's Sustainability on a Life-Cycle Basis

Site Selection and Utilization
Origin & Manufacturing of
Building Materials
Consumption of Energy and
Water in Construction and
Building Use
Use and Maintenance of the
Building
Demolition of the Building

Strategies for More Sustainable Approach

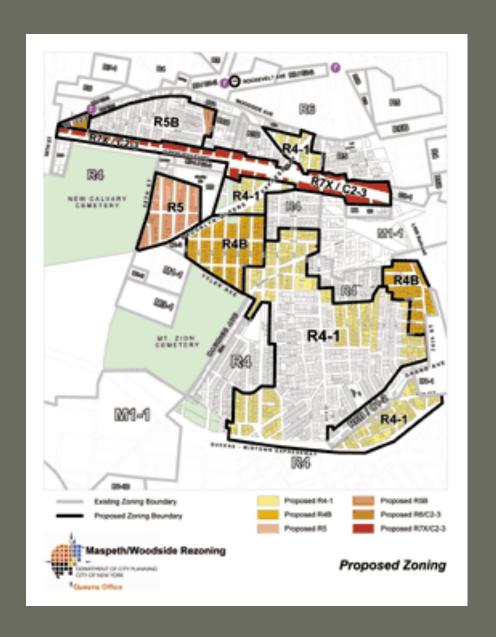
- Reduce Building Energy Consumption
- Avoid / Minimize Fossil Fuels
- Reuse Existing Buildings
- Build on Degraded Land (Brown Field sites)
- Restore Ecosystems
- **■**Conserve Water

Ultimate Goal:

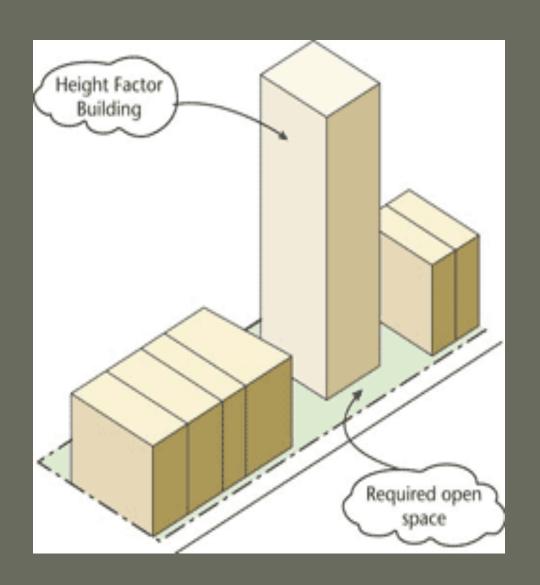
Sustainable Design = Standard Design Practice

Owner and Design Team

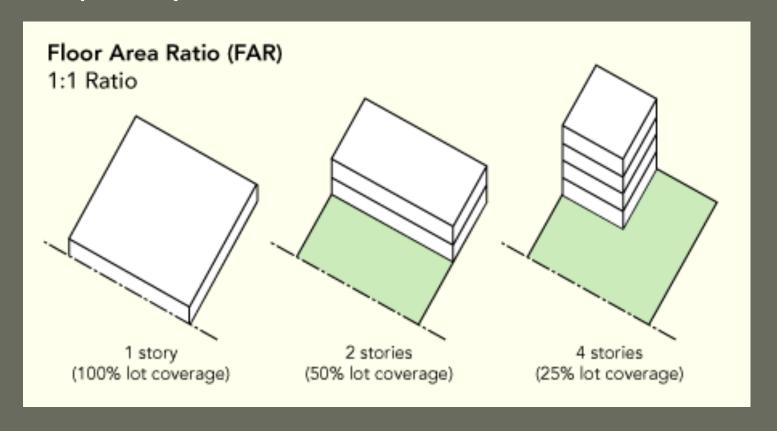
Owner/Client Architect Engineers & Consultants Construction Manager General Contractor Sub-contractors Municipal Building Inspector End User

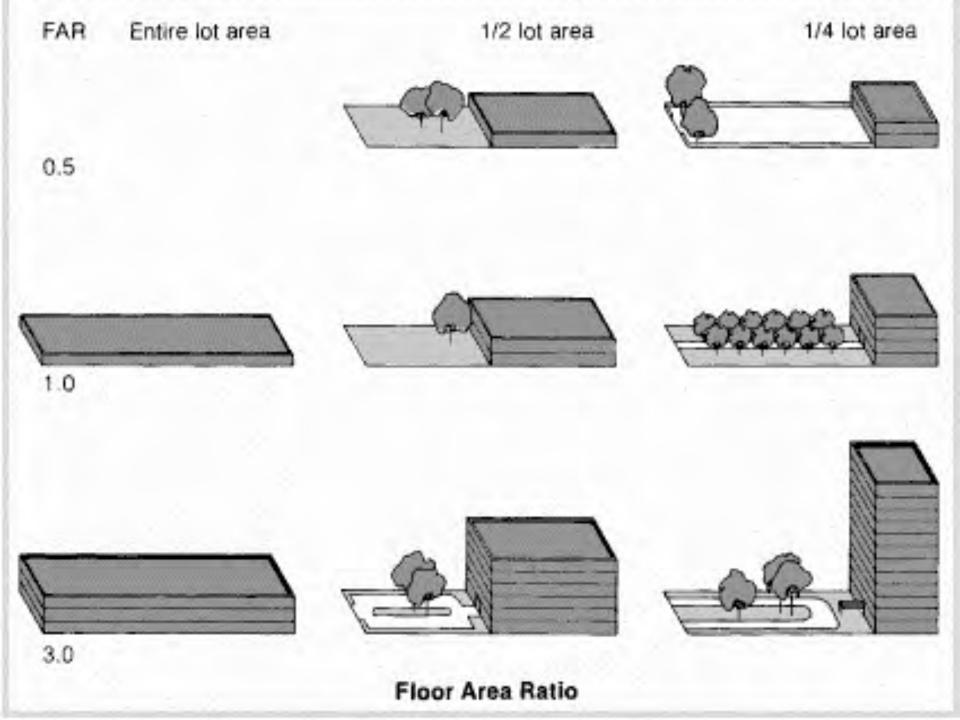


Zoning Districts
Land Use Map

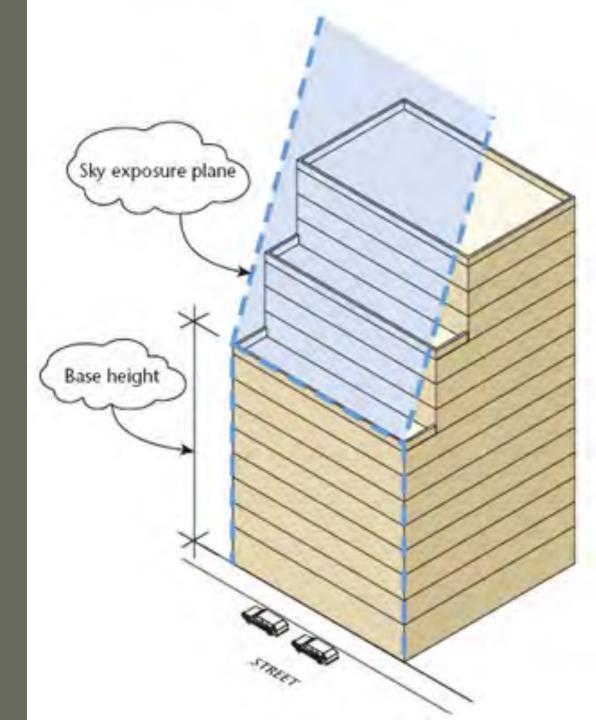

R - Residential

C - Commercial

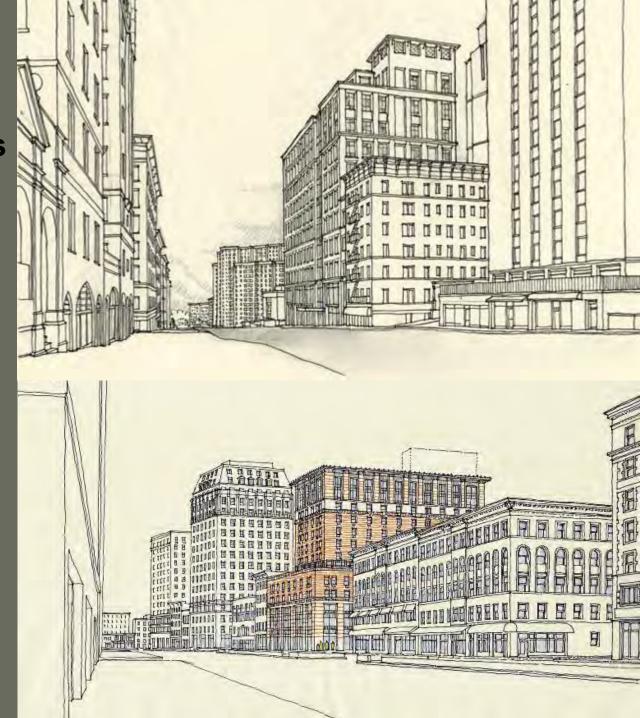

M – Manufacturing



Land Coverage
Building Height
Setbacks
F.A.R.

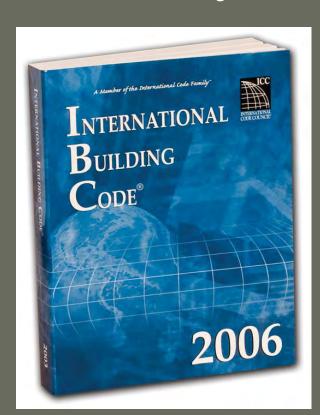


FLOOR AREA RATIO = <u>Total Allowable Building Area</u> (F.A.R.) Total Lot Area

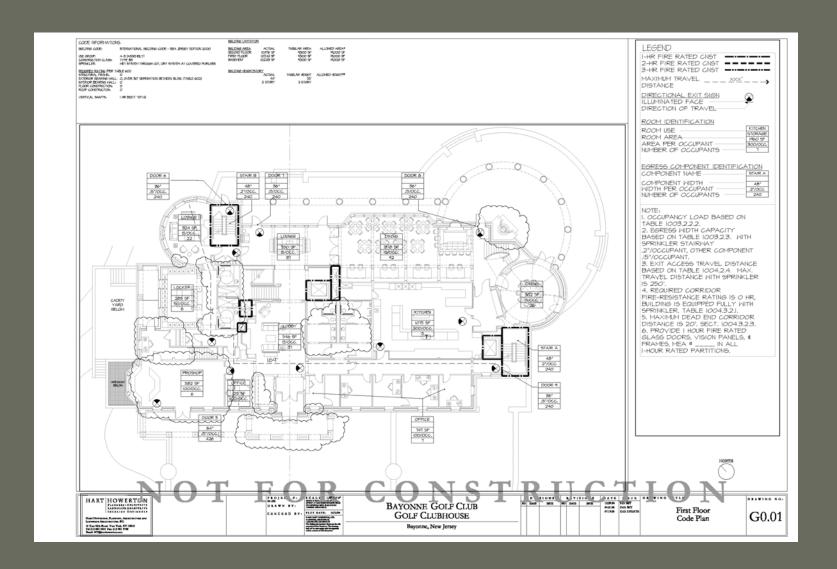


Sky Exposure Plane

Sky Exposure Plane



ARCH 1240


Protect Public Health and Safety

Model Building Codes

IBC

Life Safety Drawings

Occupancy Groups

Construction Types

Fire Resistance Rating Requirements

Allowable Building Areas and Heights

Sprinkler Systems

Light and Ventilation Requirements

Emergency Egress

Structural Design

Accessibility

Energy Efficiency

Occupancy Groups

Occupancy Groups

A Assembly

B Business

E Educational

F Industrial

H High Hazard

l Institutional

M Mercantile

R Residential

S Storage

U Utility Buildings

Construction Types

IA (most resistant)

IB

IIA

IIB

IIIA

IIIB

IV – Heavy Timber

VA

VB (least resistant)

ARCH 1240

Occupancy Group (vertical)

Construction Type (horizontal)

Result: Max Area/Floor

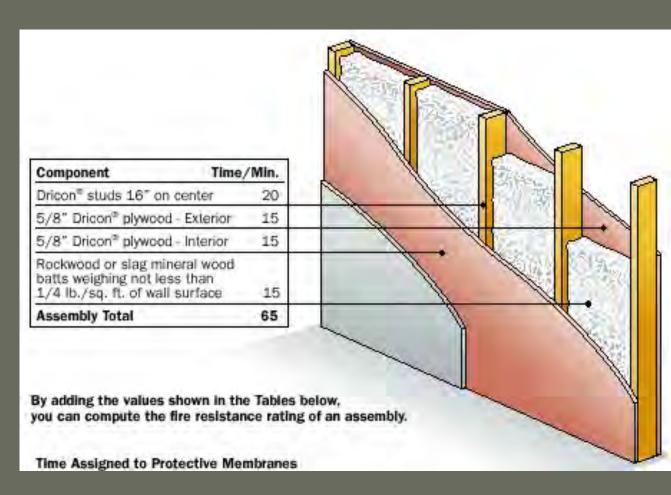
Height Limit (feet above grade + stories) TABLE 503
ALLOWABLE HEIGHT AND BUILDING AREAS

Height limitations shown as stories and feet above grade plane.

Area limitations as determined by the definition of "Area, building," per floor.

		TYPE OF CONSTRUCTION								
		TYPE II TYPE II		TYPE III		TYPE IV	ТҮР			
		A	В	A	В	A	В	нт	A	В
GROUP	HGT(feet)	ÜL	160	65	55	65	55	65	50	40
A-1	S A	UL. UL	5 UL	3 15,500	2 8,500	3 14,000	2 8,500	3 15,000	2 11,500	1 5,500
A-2	S A	UL UL	11 UL	3 15,500	9,500	3 14,000	9,500	3 15,000	2 11,500	1 6,000
A-3	S A	UL. UL	11 UL	3 15,500	9,500	3 14,000	9,500	3 15,000	2 11,500	6,000
A-4	S A	UL UL	11 UL	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	6,000
A-5	SA	UL UL	UL. UL	UL	UL	UL UL	UL	UL UL	UL UL	UL
В	S A	UL	11 UL	5 37,500	4 23,000	5 28,500	4 19,000	5 36,000	3 18,000	2 9,000
Е	S A	UL	5 UL	3 26,500	2 14,500	3 23,500	2 14,500	3 25,500	1 18,500	9,500
F-1	S	UL	II UL	4 25,000	2 15,500	3 19,000	2 12,000	4 33,500	2 14,000	1 8,500
F-2	S A	UL UL	11 UL	5 37,500	3 23,000	4 28,500	3 18,000	5 50,500	3 21,000	2 13,000
H-1	S	1 21,000	1 16,500	11,000	1 7,000	9,500	7,000	1 10,500	1 7,500	NP NP
H-2	S A	UL 21,000	3 16,500	2 11,000	7,000	9,500	7,000	2 10,500	7,500	1 3,000
H-3	S A	UL UL	6 60,000	4 26,500	2 14,000	4 17,500	2 13,000	4 25,500	2 10,000	1 5,000
H-4	S A	UL UL	7 UL	5 37,500	3 17,500	5 28,500	3 17,500	5 36,000	3 18,000	2 6,500
H-5	S	J UL	3 UL	3 37,500	23,000	3 28,500	3 19,000	3 36,000	3 18,000	2 9,000
I-1	S A	UL UL	9 55,000	4 19,000	3 10,000	4 16,500	3 10,000	4 18,000	3 10,500	2 4,500
I-2	SA	UL UL	4 UL	2 15,000	1 11,000	1 12,000	Np Np	1 12,000	1 9,500	NP NP
1-3	S A	UL UL	4 UL	2 15,000	11,000	2 10,500	1 7,500	2 12,000	2 7,500	1 5,000
I-4	S	UL UL	5 60,500	3 26,500	2 13,000	3 23,500	2 13,000	3 25,500	1 18,500	9,000
M	S A	UL UL	11 UL	4 21,500	4 12,500	4 18,500	4 12,500	20,500	3 14,000	1 9,000
R-1	S A	UL UL	11 UL	4 24,000	4 16,000	4 24,000	4 16,000	4 20,500	3 12,000	2 7,000
R-2ª	S A	UL UL	11 UL	4 24,000	4 16,000	4 24,000	4 16,000	4 20,500	3 12,000	2 7,000
R-3ª	S A	UL UL	11 UL	4 UL	4 UL	4 UL	4 UL	4 UL	3 UL	3 UL
R-4	S A	UL	11 UL	4 24,000	4 16,000	4 24,000	16,000	4 20,500	3 12,000	2 7,000
S-1	S A	UL UL	11 48,000	4 26,000	3 17,500	3 26,000	3 17,500	4 25,500	3 14,000	9,000
S-2	S A	UL UL	11 79,000	5 39,000	4 26,000	4 39,000	4 26,000	5 38,500	4 21,000	2 13,500
U	S A	UL UL	5 35,500	4 19,000	2 8,500	3 14,000	2 8,500	4 18,000	9,000	1 5,500

For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m²


= Unlimited

a. As applicable in Section 101.2.

Building Codes Fire Resistance Rating

Tested in a Laboratory

"the time in hours or fractions of an hour, that a material or assembly of materials will withstand the passage of flame and the transmission of heat when exposed to fire under specified conditions of test and performance criteria."

Other Codes & Regulations

Health Code
Plumbing Code
Electrical Code
Energy Code
Americans with Disabilities Act [ADA]
Occupational Safety and Health Act
[OSHA]

www.osha.gov

mana properties

Information Resources

ASTM:

American Society for Testing and Materials specs for common materials

American National
Standards Institute
standards for industrial products

Information Resources

CSI:

Construction Specifications Institute

Technical standards

MasterFormat:

Division 1: General Requirements

Division 2: Site Work

Division 3: Concrete

Division 4: Masonry.....

Division 7: Thermal & Moisture Protection

Division 8: Doors & Windows

Division 9: Finishes.....

Design Professional's Challenge

What provides required functional performance?
What provides the desired aesthetic result?
What is possible legally?
What is most economical?
How can it be built in a sustainable manner?

ARCH 1240