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ABSTRACT 
In introductory programming courses, proficiency is typically 
achieved through substantial practice in the form of relatively 
small assignments and quizzes. Unfortunately, creating 
programming assignments and quizzes is both, time-consuming 
and error-prone. We use Automatic Item Generation (AIG) in 
order to address the problem of creating numerous programming 
exercises that can be used for assignments or quizzes in 
introductory programming courses. AIG is based on the use of 
test-item templates with embedded variables and formulas which 
are resolved by a computer program with actual values to 
generate test-items. Thus, hundreds or even thousands of test-
items can be generated with a single test-item template. We 
present a semantic-based AIG that uses linked open data (LOD) 
and automatically generates contextual programming exercises. 
The approach was incorporated into an existing self-assessment 
and practice tool for students learning computer programming. 
The tool has been used in different introductory programming 
courses to generate a set of practice exercises different for each 
student, but with the same difficulty and quality. 
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1 INTRODUCTION 
The literature abounds with research on pedagogies and 

innovative approaches for introductory computer programming 
courses (CS1), such as collaborative learning, pair-programming, 
peer-lead instruction, flipped classrooms, and live coding [1-6]. 
Many works are motivated by the high failure rates in CS1 
courses all over the world. Passing rates are estimated to be 
around 63%. 

Regardless of the approach or the degree to which an 

approach is used in the classroom, the need for considerable 
practice in introductory programming courses is indisputable 
and widely acknowledged. Proficiency in these courses is usually 
reached through small but frequent assignments. The work in 
[7] validates the importance of performing multiple exercises 
with prompt feedback in order for students to gain proficiency 
on a concept. In [8], evidence is provided that both, practice and 
reflection, play critical roles in the development of programming 
proficiency. 

Preparing assignments and assessments is a time-consuming 
task for instructors. Automatic Item Generation (AIG) was used 
to create a tool that automatically generates programming 
practice exercises thus relieving the instructor from having to 
generate them. AIG is an approach for developing test-items or 
questions for exams, automatically by a program [9]. Existing 
approaches to AIG are mainly template-based. Instead of 
creating a question, experts create a template with embedded 
variables and formulas. By replacing those variables and 
formulas with different values from a range of values specified 
by the expert, a high volume of test-items can be generated from 
a single item template.  AIG is critical in applications such as 
Computer Adaptive Testing (CAT) where a very large bank of 
items is needed. CAT is a form of computer-based testing that 
adapts to the examinee's ability level by selecting questions 
based on what is known about the examinee from answers to 
previous questions [10]. CAT facilitates precise evaluation at the 
individual level, which could lead to shorter and faster tests (i.e., 
the test can stop as soon as an assessment of the student’s 
knowledge has been made). 

The type of practice given to students should not be 
overlooked. Several educational theories emphasize the need for 
introductory contexts that align with students’ interests and 
goals [11, 12].  Examples in CS1 courses should make sense to 
students and promote engagement. Recent works [8, 12-21] have 
explored the use of engaging applications such as robotics, 
music, games, media, and physical computing in introductory 
programming courses. Results show that these approaches 
engage students positively, increase motivation, facilitate 
understanding, and improve outcomes and retention rates.  

Instead of choosing one specific application for a CS1 course, 
we are concerned with creating numerous practice exercises that 
are meaningful to a certain degree. It is not easy to create 
contextual examples for minimal exercises and to manually 
create plenty of examples that will satisfy a broad variety of 
learners. We have extended the traditional template-based AIG 
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approach with a semantic-based approach that connects to 
existing Linked Open Data (LOD)1 sources to generate different 
contexts for a practice exercise. To the best of our knowledge, 
there is no other known work that combines linked open data 
and automatic item generation to generate contextualized items. 
We are concerned with introductory programming courses and 
problem solving as application domain, but our approach is 
transferable to many other domains. 

We have incorporated our semantic-based AIG tool as part of 
a web-based system that creates and delivers exams online [22]2. 
We have used such system in several courses to deliver quizzes. 
We also used our tool to generate coding problems that we have 
administered on paper. This paper presents the semantic-based 
AIG approach used in our tool as well as an initial evaluation 
based on our experience thus far and the results of a pilot study. 
Advantages of the semantic-based AIG approach presented here 
include: a) having a large pool of practice exercises or test items; 
b) generating different questions for each student and thus 
making it harder for students to cheat; c) increasing motivation 
and reducing chances of misunderstanding the question; and d) 
providing students with plenty of exercises to practice until 
proficiency is achieved. Although our approach currently has 
mild contextualization, it can form the basis for a more advanced 
learning platform with more specialized contextual and CAT 
and/or intelligent tutoring features. 

2 RELATED WORK 
Some works have explored the use of AIG in the computer-

programming domain. In [23] AIG is used to automatically 
generate questions in the mathematics, physics and computer 
programming domains. The late one however, the only 
variability is in the programming language asked to solve the 
problem (which assumes students can write in different 
programming languages). The authors point out that the main 
point of interest of these exercises is in its automatic grading 
(through test cases).  

In [24-27] the authors present an ontology-based, multiple 
choice question generation approach. They use ontologies along 
with some natural language processing to generate factual 
questions about the domain of the ontology. For example, a 
geographic ontology is used in [25] to generate questions about 
geography. No AIG style templates are used. In contrast, we use 
Linked Open Data and its associated ontologies to insert context 
into the questions we generate using AIG templates.  

The authors in [28] perform an assessment of the usability of 
Linked Data for the generation of item variables in AIG. Their 
focus is on the use of LOD as the domain knowledge from which 
questions can be generated. They raise the issue of data quality 
and inconsistencies in LOD which can be a problem when LOD 
is using as source of knowledge. In contrast, we use LOD to 
contextualize the test items, which do not belong to the same 
domain as the ontology (the domain is computer programming). 

                                                                 
1 https://www.w3.org/standards/semanticweb/data 
2 http://mz-unbound.com/newipractice/ 

For example, using a movies ontology, [28] would generate 
quizzes about movies while we instead generate computer 
programming questions in the context of movies (using movies 
as part of the problem formulation). 

3 SEMANTIC-BASED AIG 

3.1 Automated Item Generation 
AIG is an approach for developing test-items or questions for 

exams, automatically by a program. The most common AIG 
approach is based on the use of test-item templates with 
embedded variables and formulas. The variables and formulas in 
the template are resolved by a computer program with actual 
values to generate test-items. Current approaches to AIG vary by 
the method used for giving values to the variables: a text [29], 
mathematical equations [9, 30], or a semantic model [24-28]. The 
obvious advantage of an AIG system is its ability to produce high 
volumes of test-items and therefore numerous different tests 
with the same difficulty and quality.  

We use AIG in the computer-programming domain to 
generate questions of different types, such as open-ended, short 
answer, multiple choice, and true or false. Figure 1 shows an 
example of a short answer test-item template and two sample 
test-items generated from the template. The variables are 
marked with {{}}. A test-item template is composed of:  
 Stem – The stem contains the actual question with 

embedded variables.  
 Options (optional)– For multiple-choice test-items 

templates, the answer options with embedded variables. 
The answer options include one correct option and one or 
more incorrect options or distractors. 

 Key – The key is an indicator to the correct answer. 
 Script – The script is a computer program that generates 

values for the embedded variables in the previous elements 
of the template and generates the key. 

3.2  Linked Open Data 
Linked Data is a method of publishing data using recognized 

standards so that it can be interlinked and become more useful 
through semantic queries. It uses standards and technologies 
that allow sharing of information in a way that can be read 
automatically by computers. This enables data from different 
sources to be connected and queried [31]. Linked Open Data 
(LOD) is Linked Data that is released under an open license, 
which does not impede its reuse for free [32]. 

In LOD, relationships are represented as (subject, predicate, 
object) triples. Resources are represented with URIs (Uniform 
Resource Identifiers), which can be abbreviated as prefixed 
names. The predicate specifies how the subject and object are 
related.  A comprehensive introduction to linked open data is out 
of the scope of this paper. The interested reader can check [31] 
and [32].  



 

 

 

Figure 1: Example of AIG applied to the computer 
programming domain: a test-item template, the algorithm 
to instantiate it, and two of the hundreds of questions that 

can be generated with the template. 

 
The DBpedia3 linked open dataset consists of RDF triples 

extracted from the infoboxes commonly seen on the right-hand 
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side of Wikipedia articles. The following is an excerpt from 
DBpedia about The Hunger Games movie: 
PREFIX db: <http://dbpedia.org/resource/> 

PREFIX dbo: <http://dbpedia.org/ontology/> 

PREFIX dbp: <http://dbpedia.org/property/> 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

db:The_Hunger_Games_(film) rdf:type dbo:Film . 

db:The_Hunger_Games_(film) dbo:writer db:Suzanne_Collins. 

db:The_Hunger_Games_(film) dbo:starring db:Elizabeth_Banks. 

db:The_Hunger_Games_(film) dbo:starring db:Jennifer_Lawrence.

db:The_Hunger_Games_(film) dbo:starring db:Liam_Hemsworth.

db:The_Hunger_Games_(film) dbo:editing db:Juliette_Welfling. 

db:The_Hunger_Games_(film) dbo:director db:Gary_Ross. 

db:The_Hunger_Games_(film) dbo:producer db:Nina_Jacobson. 

db:The_Hunger_Games_(film) dbp:country "United States". 

Optionally, resources in LOD can be associated with an 
ontology that specifies the concepts (classes) that a resource can 
belong to, as well as the types of relations among classes. In the 
example above, The Hunger Games film is specified to belong to 
the Film class. Further, the DBpedia ontology states that a 
resource of the class Film (e.g. The Hunger Games) has a writer 
relation to a resource of the class Person (e.g. Suzanne Collins). 
Resources in different LOD datasets can also be interlinked to 
complement the knowledge about the resources described in the 
data. For example, the country associated with the Hunger 
Games movie in the previous example is United States:  

db:The_Hunger_Games_(film) dbp:country "United States" 
Geonames4, an LOD dataset with knowledge about millions 

of geographical locations worldwide, could be queried to retrieve 
further information about the resource United States. 

LOD is used in our semantic-based AIG approach to populate 
the variables of the test-item templates in order to generate 
programming exercises that are associated with real-world 
concepts and examples. LOD datasets can be queried using the 
SPARQL query language to query local or remote repositories 
(e.g. http://dbpedia.org/sparql/). Figure 2 shows an SPARQL 
query that can be used to get a list of actors from the DBpedia 
dataset. 

We specify ontological elements that can be used to populate 
the variables in the test-item templates. We use SPARQL to 
query linked open datasets in order to obtain instances of the 
ontological elements and use them as values for the variables of 
a test-item template.  
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Figure 2: An SPARQL query to obtain a list of actors from 
DBpedia. 

Figure 3 provides an example of a short answer, semantic-
based test-item template and two sample questions generated 
from the template. For simplicity purposes, we provide only the 
algorithm that generates the values for the variables.  

 

 

Figure 3: Example of semantic-based AIG applied to the 
computer programming domain: a test-item template, the 

algorithm to instantiate it, and two of the hundreds of 
questions that can be generated with the template. 

A small number of instances in DBPedia are mapped to the 
ontology. For example, few actors are declared to be instances of 

the class Actor. However, they are a DBPedia resource and are 
related to other resources such as films. For example, the starring 
relation associates a film with an actor (even if the actor is not 
declared as such in the ontology; he might be declared only as a 
Person). Therefore, it can be inferred that the object of the 
starring relation is an Actor. Due to this limitation, our approach 
cannot rely on generic queries like the one in Figure 2. 
Currently, we have a fixed set of classes/concepts that can be 
used to instantiate the variables in a template and we have pre-
built SPARQL queries for them.  The SPARQL queries used in 
the actors’ example of Figure 3 are: 

 
Queries to LOD can be more complex and detailed than the 

queries in these examples, allowing for more specific contexts to 
be defined. For example, in the movies domain, one could query 
specifically French films, films in a specific genre, or films 
associated with a particular actor or director.  

The content of the LOD cloud is diverse. It comprises data 
about geographic locations, people, companies, books, music, 
scientific publications, films, television and radio programs, 
genes, proteins, online communities, census results, and product 
reviews. As May 2009, the Web of Data consisted of 4.7 billion 
triples, which are interlinked by around 142 million RDF links 
[30]. Currently, we have focused our work on a few LOD 
datasets (i.e. DBPedia, foaf, and geonames), which are the biggest 
datasets in the LOD cloud. And as it was mentioned before, we 
only use a fixed set of concepts from them. Full use of a variety 
of LOD sources will allow to provide further contextualization.  

4  EVALUATION  
We have used our semantic-based AIG tool in several courses 

to generate quizzes with positive outcomes for instructors and 
students. In this paper, we focus on a pilot study designed to 
conduct an initial assessment of the impact of explicitly spending 
extra time on practice exercises generated with our sematic-
based AIG tool.   

Two sections of an introductory programming course were 
used for the study. The course is taught at a four-year urban 
college and uses Python programming language. One section of 
the course was used to test an intervention strategy 
implemented with the goal of honing students’ programming 
skills. The other section was used as a control group. Students in 
both groups were given a test to evaluate their coding skills in 
the topics learned up to that point.  The test was given past mid-

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT DISTINCT ?actor  WHERE  
{   
   ?movie <http://dbpedia.org/ontology/starring> ?actor. 
   FILTER (strStarts(str(?actor), "http://dbpedia.org/resource/B")).
}  
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT DISTINCT ?actor  WHERE  
{ 
    ?movie <http://dbpedia.org/ontology/starring> ?actor. 
    FILTER (regex(?actor, "^((?!B).)*$")). 
}    



 

semester, when students had already learned some basic 
programming.  

Our semantic-based AIG approach was used to generate a set 
of practice exercises (four sets of twelve problems) individualized 
to each student’s needs in the intervention group. Students 
worked on their exercises for a period of two weeks. Some 
exercises were given to students as in-class lab assignments and 
others as homework assignments. Nothing else was covered 
during that period of time in the intervention group while the 
control group continued with the schedule as planned. A post-
assessment was given to students in both groups near the end of 
the semester to evaluate them on the same skills than in the pre-
test. We were interested in observing whether there was any 
significant difference in the progress made in learning-to-code 
between the students from the two groups. 

Figures 4 to 7 show the results obtained in the pre and post 
assessments from the control group and the intervention group, 
respectively. The stacked line charts depict the cumulative 
students’ scores by type of question: 1) code reading (tracing 
code and indicating the output of a program), 2) code 
manipulation (modify/extend provided starter code to meet 
requirements), and 3) code writing (write code from scratch to 
meet requirements). Students have been anonymized (s1, s2, 
etc.). The evaluation instrument (quiz) for each skill level had a 
max score of 100. 

 

Figure 4: Pre-test results: Control group cumulative scores 
by level. 

 

Figure 5: Post-test results: Control group cumulative 
scores by level. 

Table 1 shows the average grade of the students on the exams 
pre- and post-intervention. Both groups exhibited an 

improvement towards the end of the course. However, students 
in the intervention group showed a greater improvement than 
students who did not. All the students in the intervention group 
finished at a proficient level in code reading questions, while 
some in the control group did not.  A larger improvement was 
observed in the code writing skills of the students in the 
intervention group. 

Table 1: Average grade obtained by both groups of 
students, pre- and post-intervention. 

 Pre-Test Post-Test 
Group Read Manip. Write Read Manip. Write

Control 58.8 62.8 35.3 83.8 56.4 61.9 
Intervention 76.3 49.4 43.8 95.0 92.3 81.5 

 

Figure 6: Pre-test results: Intervention group cumulative 
scores by level. 

 

Figure 7: Post-test results: Intervention group cumulative 
scores by level. 

6  CONCLUSIONS AND FUTURE WORK 
We presented a semantic-based AIG approach to the 

automatic generation of contextualized programming exercises 
that can be used for quizzes and homework assignments in 
introductory programming courses. The approach extends the 
traditional template-based AIG by connecting to existing Linked 
Open Data sources to generate different contexts for a 
programming practice exercise template.  

A pilot study assessed the impact of explicitly spending extra 
time on practice exercises generated with our sematic-based AIG 



 

tool. Results obtained from both, an intervention group and a 
control group, show the benefits of dedicating extra time to 
practicing. Students that participated in the intervention strategy 
show a greater improvement in learning-to-code over the 
students in the control group.    

In its current state, our semantic-based AIG approach 
generates examples with simple contextualization. We will 
continue our work to devise how LOD and ontologies can be 
exploited to generate richer and more detailed contexts. We are 
also interested in evaluating whether it really matters that the 
students be familiar with the context of the question. Once 
further contextualization is achieved and preferences of students 
can be inferred, research must be done to evaluate the impact of 
this approach on learners’ cognition and motivation.  In the long 
term, we are interested in building a suite of CAT and intelligent 
tutor tools that will offer students the opportunity for plenty of 
personalized practice that will potentially help them achieve 
proficiency. 
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