
On the Use of Semantic-Based AIG to Automatically Generate
Programming Exercises

Laura Zavala
Medgar Evers College | CUNY

Brooklyn, NY 11225
rzgutierrez@mec.cuny.edu

Benito Mendoza
New York City College of Technology | CUNY

Brooklyn, NY 11201
bmendoza@citytech.cuny.edu

ABSTRACT
In introductory programming courses, proficiency is typically
achieved through substantial practice in the form of relatively
small assignments and quizzes. Unfortunately, creating
programming assignments and quizzes is both, time-consuming
and error-prone. We use Automatic Item Generation (AIG) in
order to address the problem of creating numerous programming
exercises that can be used for assignments or quizzes in
introductory programming courses. AIG is based on the use of
test-item templates with embedded variables and formulas which
are resolved by a computer program with actual values to
generate test-items. Thus, hundreds or even thousands of test-
items can be generated with a single test-item template. We
present a semantic-based AIG that uses linked open data (LOD)
and automatically generates contextual programming exercises.
The approach was incorporated into an existing self-assessment
and practice tool for students learning computer programming.
The tool has been used in different introductory programming
courses to generate a set of practice exercises different for each
student, but with the same difficulty and quality.

ACM Reference format:
Laura Zavala and Benito Mendoza. 2018. On the Use of Semantic-Based
AIG to Automatically Generate Programming Exercises. In SIGCSE ’18:
49th ACM Technical Symposium on Computer Science Education, Feb. 21–
24, 2018, Baltimore, MD, USA. ACM, NY, NY, USA, 6 pages.
https://doi.org/10.1145/3159450.3159608

1 INTRODUCTION
The literature abounds with research on pedagogies and

innovative approaches for introductory computer programming
courses (CS1), such as collaborative learning, pair-programming,
peer-lead instruction, flipped classrooms, and live coding [1-6].
Many works are motivated by the high failure rates in CS1
courses all over the world. Passing rates are estimated to be
around 63%.

Regardless of the approach or the degree to which an

approach is used in the classroom, the need for considerable
practice in introductory programming courses is indisputable
and widely acknowledged. Proficiency in these courses is usually
reached through small but frequent assignments. The work in
[7] validates the importance of performing multiple exercises
with prompt feedback in order for students to gain proficiency
on a concept. In [8], evidence is provided that both, practice and
reflection, play critical roles in the development of programming
proficiency.

Preparing assignments and assessments is a time-consuming
task for instructors. Automatic Item Generation (AIG) was used
to create a tool that automatically generates programming
practice exercises thus relieving the instructor from having to
generate them. AIG is an approach for developing test-items or
questions for exams, automatically by a program [9]. Existing
approaches to AIG are mainly template-based. Instead of
creating a question, experts create a template with embedded
variables and formulas. By replacing those variables and
formulas with different values from a range of values specified
by the expert, a high volume of test-items can be generated from
a single item template. AIG is critical in applications such as
Computer Adaptive Testing (CAT) where a very large bank of
items is needed. CAT is a form of computer-based testing that
adapts to the examinee's ability level by selecting questions
based on what is known about the examinee from answers to
previous questions [10]. CAT facilitates precise evaluation at the
individual level, which could lead to shorter and faster tests (i.e.,
the test can stop as soon as an assessment of the student’s
knowledge has been made).

The type of practice given to students should not be
overlooked. Several educational theories emphasize the need for
introductory contexts that align with students’ interests and
goals [11, 12]. Examples in CS1 courses should make sense to
students and promote engagement. Recent works [8, 12-21] have
explored the use of engaging applications such as robotics,
music, games, media, and physical computing in introductory
programming courses. Results show that these approaches
engage students positively, increase motivation, facilitate
understanding, and improve outcomes and retention rates.

Instead of choosing one specific application for a CS1 course,
we are concerned with creating numerous practice exercises that
are meaningful to a certain degree. It is not easy to create
contextual examples for minimal exercises and to manually
create plenty of examples that will satisfy a broad variety of
learners. We have extended the traditional template-based AIG

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
SIGCSE '18, February 21–24, 2018, Baltimore, MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02...$15.00
https://doi.org/10.1145/3159450.3159608

approach with a semantic-based approach that connects to
existing Linked Open Data (LOD)1 sources to generate different
contexts for a practice exercise. To the best of our knowledge,
there is no other known work that combines linked open data
and automatic item generation to generate contextualized items.
We are concerned with introductory programming courses and
problem solving as application domain, but our approach is
transferable to many other domains.

We have incorporated our semantic-based AIG tool as part of
a web-based system that creates and delivers exams online [22]2.
We have used such system in several courses to deliver quizzes.
We also used our tool to generate coding problems that we have
administered on paper. This paper presents the semantic-based
AIG approach used in our tool as well as an initial evaluation
based on our experience thus far and the results of a pilot study.
Advantages of the semantic-based AIG approach presented here
include: a) having a large pool of practice exercises or test items;
b) generating different questions for each student and thus
making it harder for students to cheat; c) increasing motivation
and reducing chances of misunderstanding the question; and d)
providing students with plenty of exercises to practice until
proficiency is achieved. Although our approach currently has
mild contextualization, it can form the basis for a more advanced
learning platform with more specialized contextual and CAT
and/or intelligent tutoring features.

2 RELATED WORK
Some works have explored the use of AIG in the computer-

programming domain. In [23] AIG is used to automatically
generate questions in the mathematics, physics and computer
programming domains. The late one however, the only
variability is in the programming language asked to solve the
problem (which assumes students can write in different
programming languages). The authors point out that the main
point of interest of these exercises is in its automatic grading
(through test cases).

In [24-27] the authors present an ontology-based, multiple
choice question generation approach. They use ontologies along
with some natural language processing to generate factual
questions about the domain of the ontology. For example, a
geographic ontology is used in [25] to generate questions about
geography. No AIG style templates are used. In contrast, we use
Linked Open Data and its associated ontologies to insert context
into the questions we generate using AIG templates.

The authors in [28] perform an assessment of the usability of
Linked Data for the generation of item variables in AIG. Their
focus is on the use of LOD as the domain knowledge from which
questions can be generated. They raise the issue of data quality
and inconsistencies in LOD which can be a problem when LOD
is using as source of knowledge. In contrast, we use LOD to
contextualize the test items, which do not belong to the same
domain as the ontology (the domain is computer programming).

1 https://www.w3.org/standards/semanticweb/data
2 http://mz-unbound.com/newipractice/

For example, using a movies ontology, [28] would generate
quizzes about movies while we instead generate computer
programming questions in the context of movies (using movies
as part of the problem formulation).

3 SEMANTIC-BASED AIG

3.1 Automated Item Generation
AIG is an approach for developing test-items or questions for

exams, automatically by a program. The most common AIG
approach is based on the use of test-item templates with
embedded variables and formulas. The variables and formulas in
the template are resolved by a computer program with actual
values to generate test-items. Current approaches to AIG vary by
the method used for giving values to the variables: a text [29],
mathematical equations [9, 30], or a semantic model [24-28]. The
obvious advantage of an AIG system is its ability to produce high
volumes of test-items and therefore numerous different tests
with the same difficulty and quality.

We use AIG in the computer-programming domain to
generate questions of different types, such as open-ended, short
answer, multiple choice, and true or false. Figure 1 shows an
example of a short answer test-item template and two sample
test-items generated from the template. The variables are
marked with {{}}. A test-item template is composed of:
 Stem – The stem contains the actual question with

embedded variables.
 Options (optional)– For multiple-choice test-items

templates, the answer options with embedded variables.
The answer options include one correct option and one or
more incorrect options or distractors.

 Key – The key is an indicator to the correct answer.
 Script – The script is a computer program that generates

values for the embedded variables in the previous elements
of the template and generates the key.

3.2 Linked Open Data
Linked Data is a method of publishing data using recognized

standards so that it can be interlinked and become more useful
through semantic queries. It uses standards and technologies
that allow sharing of information in a way that can be read
automatically by computers. This enables data from different
sources to be connected and queried [31]. Linked Open Data
(LOD) is Linked Data that is released under an open license,
which does not impede its reuse for free [32].

In LOD, relationships are represented as (subject, predicate,
object) triples. Resources are represented with URIs (Uniform
Resource Identifiers), which can be abbreviated as prefixed
names. The predicate specifies how the subject and object are
related. A comprehensive introduction to linked open data is out
of the scope of this paper. The interested reader can check [31]
and [32].

Figure 1: Example of AIG applied to the computer
programming domain: a test-item template, the algorithm
to instantiate it, and two of the hundreds of questions that

can be generated with the template.

The DBpedia3 linked open dataset consists of RDF triples

extracted from the infoboxes commonly seen on the right-hand

3 http://wiki.dbpedia.org/

side of Wikipedia articles. The following is an excerpt from
DBpedia about The Hunger Games movie:
PREFIX db: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

db:The_Hunger_Games_(film) rdf:type dbo:Film .

db:The_Hunger_Games_(film) dbo:writer db:Suzanne_Collins.

db:The_Hunger_Games_(film) dbo:starring db:Elizabeth_Banks.

db:The_Hunger_Games_(film) dbo:starring db:Jennifer_Lawrence.

db:The_Hunger_Games_(film) dbo:starring db:Liam_Hemsworth.

db:The_Hunger_Games_(film) dbo:editing db:Juliette_Welfling.

db:The_Hunger_Games_(film) dbo:director db:Gary_Ross.

db:The_Hunger_Games_(film) dbo:producer db:Nina_Jacobson.

db:The_Hunger_Games_(film) dbp:country "United States".

Optionally, resources in LOD can be associated with an
ontology that specifies the concepts (classes) that a resource can
belong to, as well as the types of relations among classes. In the
example above, The Hunger Games film is specified to belong to
the Film class. Further, the DBpedia ontology states that a
resource of the class Film (e.g. The Hunger Games) has a writer
relation to a resource of the class Person (e.g. Suzanne Collins).
Resources in different LOD datasets can also be interlinked to
complement the knowledge about the resources described in the
data. For example, the country associated with the Hunger
Games movie in the previous example is United States:

db:The_Hunger_Games_(film) dbp:country "United States"
Geonames4, an LOD dataset with knowledge about millions

of geographical locations worldwide, could be queried to retrieve
further information about the resource United States.

LOD is used in our semantic-based AIG approach to populate
the variables of the test-item templates in order to generate
programming exercises that are associated with real-world
concepts and examples. LOD datasets can be queried using the
SPARQL query language to query local or remote repositories
(e.g. http://dbpedia.org/sparql/). Figure 2 shows an SPARQL
query that can be used to get a list of actors from the DBpedia
dataset.

We specify ontological elements that can be used to populate
the variables in the test-item templates. We use SPARQL to
query linked open datasets in order to obtain instances of the
ontological elements and use them as values for the variables of
a test-item template.

4 http://www.geonames.org/ontology

Figure 2: An SPARQL query to obtain a list of actors from
DBpedia.

Figure 3 provides an example of a short answer, semantic-
based test-item template and two sample questions generated
from the template. For simplicity purposes, we provide only the
algorithm that generates the values for the variables.

Figure 3: Example of semantic-based AIG applied to the
computer programming domain: a test-item template, the

algorithm to instantiate it, and two of the hundreds of
questions that can be generated with the template.

A small number of instances in DBPedia are mapped to the
ontology. For example, few actors are declared to be instances of

the class Actor. However, they are a DBPedia resource and are
related to other resources such as films. For example, the starring
relation associates a film with an actor (even if the actor is not
declared as such in the ontology; he might be declared only as a
Person). Therefore, it can be inferred that the object of the
starring relation is an Actor. Due to this limitation, our approach
cannot rely on generic queries like the one in Figure 2.
Currently, we have a fixed set of classes/concepts that can be
used to instantiate the variables in a template and we have pre-
built SPARQL queries for them. The SPARQL queries used in
the actors’ example of Figure 3 are:

Queries to LOD can be more complex and detailed than the

queries in these examples, allowing for more specific contexts to
be defined. For example, in the movies domain, one could query
specifically French films, films in a specific genre, or films
associated with a particular actor or director.

The content of the LOD cloud is diverse. It comprises data
about geographic locations, people, companies, books, music,
scientific publications, films, television and radio programs,
genes, proteins, online communities, census results, and product
reviews. As May 2009, the Web of Data consisted of 4.7 billion
triples, which are interlinked by around 142 million RDF links
[30]. Currently, we have focused our work on a few LOD
datasets (i.e. DBPedia, foaf, and geonames), which are the biggest
datasets in the LOD cloud. And as it was mentioned before, we
only use a fixed set of concepts from them. Full use of a variety
of LOD sources will allow to provide further contextualization.

4 EVALUATION
We have used our semantic-based AIG tool in several courses

to generate quizzes with positive outcomes for instructors and
students. In this paper, we focus on a pilot study designed to
conduct an initial assessment of the impact of explicitly spending
extra time on practice exercises generated with our sematic-
based AIG tool.

Two sections of an introductory programming course were
used for the study. The course is taught at a four-year urban
college and uses Python programming language. One section of
the course was used to test an intervention strategy
implemented with the goal of honing students’ programming
skills. The other section was used as a control group. Students in
both groups were given a test to evaluate their coding skills in
the topics learned up to that point. The test was given past mid-

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?actor WHERE
{
 ?movie <http://dbpedia.org/ontology/starring> ?actor.
 FILTER (strStarts(str(?actor), "http://dbpedia.org/resource/B")).
}
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?actor WHERE
{
 ?movie <http://dbpedia.org/ontology/starring> ?actor.
 FILTER (regex(?actor, "^((?!B).)*$")).
}

semester, when students had already learned some basic
programming.

Our semantic-based AIG approach was used to generate a set
of practice exercises (four sets of twelve problems) individualized
to each student’s needs in the intervention group. Students
worked on their exercises for a period of two weeks. Some
exercises were given to students as in-class lab assignments and
others as homework assignments. Nothing else was covered
during that period of time in the intervention group while the
control group continued with the schedule as planned. A post-
assessment was given to students in both groups near the end of
the semester to evaluate them on the same skills than in the pre-
test. We were interested in observing whether there was any
significant difference in the progress made in learning-to-code
between the students from the two groups.

Figures 4 to 7 show the results obtained in the pre and post
assessments from the control group and the intervention group,
respectively. The stacked line charts depict the cumulative
students’ scores by type of question: 1) code reading (tracing
code and indicating the output of a program), 2) code
manipulation (modify/extend provided starter code to meet
requirements), and 3) code writing (write code from scratch to
meet requirements). Students have been anonymized (s1, s2,
etc.). The evaluation instrument (quiz) for each skill level had a
max score of 100.

Figure 4: Pre-test results: Control group cumulative scores
by level.

Figure 5: Post-test results: Control group cumulative
scores by level.

Table 1 shows the average grade of the students on the exams
pre- and post-intervention. Both groups exhibited an

improvement towards the end of the course. However, students
in the intervention group showed a greater improvement than
students who did not. All the students in the intervention group
finished at a proficient level in code reading questions, while
some in the control group did not. A larger improvement was
observed in the code writing skills of the students in the
intervention group.

Table 1: Average grade obtained by both groups of
students, pre- and post-intervention.

 Pre-Test Post-Test
Group Read Manip. Write Read Manip. Write

Control 58.8 62.8 35.3 83.8 56.4 61.9
Intervention 76.3 49.4 43.8 95.0 92.3 81.5

Figure 6: Pre-test results: Intervention group cumulative
scores by level.

Figure 7: Post-test results: Intervention group cumulative
scores by level.

6 CONCLUSIONS AND FUTURE WORK
We presented a semantic-based AIG approach to the

automatic generation of contextualized programming exercises
that can be used for quizzes and homework assignments in
introductory programming courses. The approach extends the
traditional template-based AIG by connecting to existing Linked
Open Data sources to generate different contexts for a
programming practice exercise template.

A pilot study assessed the impact of explicitly spending extra
time on practice exercises generated with our sematic-based AIG

tool. Results obtained from both, an intervention group and a
control group, show the benefits of dedicating extra time to
practicing. Students that participated in the intervention strategy
show a greater improvement in learning-to-code over the
students in the control group.

In its current state, our semantic-based AIG approach
generates examples with simple contextualization. We will
continue our work to devise how LOD and ontologies can be
exploited to generate richer and more detailed contexts. We are
also interested in evaluating whether it really matters that the
students be familiar with the context of the question. Once
further contextualization is achieved and preferences of students
can be inferred, research must be done to evaluate the impact of
this approach on learners’ cognition and motivation. In the long
term, we are interested in building a suite of CAT and intelligent
tutor tools that will offer students the opportunity for plenty of
personalized practice that will potentially help them achieve
proficiency.

6 ACKNOWLEDGMENTS
We gratefully acknowledge the support of the Research

Foundation of CUNY under PSC-CUNY Award 68164-00 46.

REFERENCES
[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagen, Y.

Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz. 2001. A Multi-
National, Multi-Institutional Study of Assessment of Programming
Skills of First- year CS Students. SIGCSE Bulletin, 33, no. 4, 125-140.

[2] L. Zavala. 2016. Read, Manipulate, and Write: A study of the role of
these cumulative skills in learning computer programming. Proceedings
of the ASEE NE 2016 Conference. April 28-30, University of Rhode Island,
Kingston, RI.

[3] L. Zavala and B. Mendoza. 2017. Precursor skills to writing code.
Journal of Computing Science in Colleges, 32, 3, 149-156.

[4] J. Sweller, and G. A. Cooper. 1985. The use of worked examples as a
substitute for problem-solving in learning algebra. Cognition and
Instruction, 2, no. 1(1985), 59–89.

[5] M. Guzdial and J. Robertson. 2010. Too much programming too soon?
Communications of the ACM, 53, no. 3 10-11, ACM, March.

[6] M. Guzdial. 2015. What's the best way to teach computer science to
beginners? Communications of the ACM, 58, no. 2,12-13, ACM, January.

[7] D. Deb, M. M. Fuad, and M. Kanan. 2017. Creating Engaging Exercises
with Mobile Response System (MRS). Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. March 08-
11, Seattle, Washington.

[8] M. J. Scott, S. Counsell, S. Lauria, S. Swift, A. Tucker, M. Shepperd and
G. Ghinea. 2015. Enhancing Practice and Achievement in Introductory
Programming with a Robot Olympics. IEEE Transactions on Education,
vol. 58, no. 4, 249-254.

[9] M. J. Gierl and H. Lai. 2012. The Role of Item Models in Automatic
Item Generation. International Journal of Testing, 12(3), 273-298.

[10] H. Wainer, N. J. Dorans, D. Eignor, R. Flaugher, B. F. Green, R. J.
Mislevy, L. Steinberg, and D. Thissen. 2000. Computerized adaptive
testing: A primer, Second Edition. Hillsdale, NJ: Lawrence Erlbaum
Associates.

[11] J. R. Savery and T. M. Duffy. 1995. Problem based learning: An
instructional model and its constructivist framework. Educational
technology, 35, no. 5, 31-38.

[12] W. W. Cobern. 1993. Contextual constructivism: The impact of culture
on the learning and teaching of science. InK. G.Tobin (Ed.),The practice
of constructivism in science education(pp. 51–69). Hillsdale, NJ:
Lawrence Erlbaum Associates.

[13] T. Im, S. Siva, J. Freeman, B. Magerko, G. Hendler, S. Engelman, M.
Miller, B. Villa, and T. McKlin. 2017 Incorporating music into an
introductory college level programming course for non-majors.
Proceedings of the IEEE Integrated STEM Education Conference (ISEC),
Princeton, NJ, 2017, pp. 43-48.

[14] J. Stigall and S. Sharma. 2017. Virtual reality instructional modules for
introductory programming courses. Proceedings of the 2017 IEEE

Integrated STEM Education Conference (ISEC), Princeton, NJ, pp. 34-42.
[15] M. A. Rubio, R. Romero-Zaliz, C. Mañoso and A. P. de Madrid. 2014.

Enhancing an introductory programming course with physical
computing modules. Proceedings of the 2014 IEEE Frontiers in Education
Conference (FIE), Madrid, 2014, pp. 1-8.

[16] F. I. Anfurrutia, A. Álvarez, M. Larrañaga and J. M. López-Gil. 2016.
Incorporating educational robots and visual programming
environments in introductory programming courses. Proceedings of the
2016 International Symposium on Computers in Education (SIIE),
Salamanca, pp. 1-4.

[17] E. Weilemann, P. Brune, and D. Meyer. 2016. Geek Toys for Non-
techies? Using Robots in Introductory Programming Courses for
Computer Science Non-majors. Proceedings of the 49th Hawaii
International Conference on System Sciences (HICSS), Koloa, HI, pp. 31-
40.

[18] W. S. Yue and W. L. Wan. 2015. The effectiveness of digital game for
introductory programming concepts. Proceedings of the 10th
International Conference for Internet Technology and Secured
Transactions (ICITST), London, pp. 421-425.

[19] M. Paralič and E. Pietriková. 2014. Learning by game creation in
introductory programming course: 5-Year-long study. Proceedings of the
12th IEEE International Conference on Emerging eLearning Technologies
and Applications (ICETA), Stary Smokovec, pp. 391-396.

[20] R. Rahul, A. Whitchurch and M. Rao. 2014. An open source graphical
robot programming environment in introductory programming
curriculum for undergraduates. Proceedings of the International
Conference on MOOC, Innovation and Technology in Education (MITE),
Patiala, pp. 96-100.

[21] N. Adamo-Villani, T. Haley-Hermiz and R. Cutler. 2013. Using a Serious
Game Approach to Teach 'Operator Precedence' to Introductory
Programming Students. Proceedings of the 17th International Conference
on Information Visualization, London, pp. 523-526.

[22] B. Mendoza, J. Reyes-Alamo, H. Wu, A. Carranza, and L. Zavala. 2016.
iPractice: A Self-assessment Tool for Students Learning Computer
Programming in an Urban Campus. Journal of Computing Sciences in
Colleges, 31, 3, 93-100..

[23] F. Prados, I. Boada, J. Soler, and J. Poch. 2005. Automatic generation and
correction of technical exercices. Proceedings of the International
Conference on Engineering and Computer Education (ICECE 2005),
Madrid, Spain.

[24] Vinu E.V and P Sreenivasa Kumar. 2015. Improving Large-Scale
Assessment Tests by Ontology Based Approach. Proceedings of the
Twenty-Eighth International Florida Artificial Intelligence Research
Society Conference. May 18-20, Hollywood, Florida, USA.

[25] A. Papasalouros, K. Kotis and K. Kanaris. 2008. Automatic generation of
multiple-choice questions from domain ontologies. Proceedings of the
IADIS e-Learning 2008 conference, Amsterdam, Netherlands.

[26] Al-Yahya M. 2014. Ontology-Based Multiple Choice Question
Generation. The Scientific World Journal. Vol. 2014, Article ID 274949, 9
pages, 2014. doi:10.1155/2014/274949.

[27] M. Cubric and M. Tosic. 2010 Towards automatic generation of
eAssessment using semantic web technologies. In Proceedings of the
2010 International Computer Assisted Assessment Conference, Jul 2010.
University of Southampton.

[28] Foulonneau, M. 2012. Generating Educational Assessment Items from
Linked Open Data: the Case of DBpedia. In: Garcia-Castro, R.e.a. (ed.):
Extended Semantic Web Conference Workshops (at the 8th International
conference on The Semantic Web), Vol. LNCS 7117. Springer, Heraklion,
Greece, pp 16-27.

[29] N. Karamanis, L. A. Ha, and R. Mitkov. 2006. Generating multiple-
choice test items from medical text: A pilot study. Paper presented at the
Fourth International Conference Natural Language Generation. Sydney,
Australia.

[30] B. Liu, H. Chen, and W. He. 2008. A framework of deriving adaptive
feedback from educational ontologies. Proceedings of the 9th
International Conference for Young Computer Scientists, Zhang Jia Jie
Hunan, China.

[31] T. Berners-Lee. 2006. Linked Data. Design Issues. W3C. Retrieved 2017-
08-18.

[32] C. Bizer, T. Heath, T. Berners-Lee. 2009. Linked Data—The Story So Far.
International Journal on Semantic Web and Information Systems. 5 (3):
1–22. ISSN 1552-6283.

