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ABSTRACT 

The main focus in programming courses is usually on writing code; students are 
asked to write programs after only being taught the syntax rules and a few examples.  We 
believe that more emphasis needs to be put in code understanding skills, which are 
precursor skills to writing code. In this paper, we present the results of an intervention 
strategy we implemented with the goal of honing students’ program understanding skills. 
Automatic Item Generation was used to generate a set of practice exercises individualized 
to each student’s needs. Results of pre and post-assessments from the intervention group 
and a control group show the benefits of dedicating time to program understanding. 

 
INTRODUCTION 

Although the need for considerable practice in introductory computer programming 
courses is indisputable and widely acknowledged, asking novice students to write programs 
after only teaching them syntax rules (of a programming language) and a few examples, 
might not be the right approach. High failure rates abide in CS1 courses all over the world 
with a pass rate estimated to be around 67.7% [1]. The emphasis in programming courses is 
mainly in writing code. This might be adequate for advanced, upper-level courses. However, 
for introductory courses, the fact that code understanding skills are a precursor to code 
writing skills should not be ignored [2, 3].  

 
Pedagogical research has shown that instruction that relies more heavily on the 

study of worked examples is more effective and efficient for learning and transfer than 
instruction consisting of problem-solving [4, 5, 6]; problem-solving requires  an enormous 
amount of cognitive processing capacity that interferes with learning to understand [4]. 
This underlying idea has been explored in several problem solving oriented disciplines. For 
example, Sweller and Cooper [7] compared the efficacy of a worked-examples approach 
versus a problem-solving approach. In their experiments, some students learnt certain 
algebraic processes by solving problems, while other students learnt the same algebraic 
processes by studying complete solutions to those problems (i.e., worked examples). They 
found that students who learned algebra with worked-examples performed significantly 
better than those who were asked to solve problems instead. In the CS domain, 
practicioners have addressed the need for a focus on code understanding before program 
writing in introductory programming courses [1, 2, 3, 8, 9,10].  

 
Zavala and Mendoza [2, 3] argue that students should be able to not only read code 

before they can write code, but also manipulate code that is given to them (i.e., modify or 
use). Formally, they state that there are three phases that students should sequentially 
master in the process of learning to write programs: code comprehension, code 
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manipulation, and code writing. In addition to these competencies, there are other skills, 
called companion skills, which should also be stressed in all three phases, many of which 
are usually under-looked in introductory programming courses. Namely, identifying 
programming constructs (variables, data types, expressions, function definitions, function 
calls, parameters, etc.), explaining code (being able to verbally explain what a piece of code 
does), understanding technical documentation (i.e., APIs), and refactoring existing code. 

 
Although code comprehension and manipulation work might be covered in 

programming courses through sample solutions, design roadmaps, implementation hints, 
and starter code, the emphasis is, by far, on code writing. Providing students with all these 
resources does not really constitute practice on code comprehension and manipulation; it is 
not the main focus and students are rarely or never assessed on these competencies [3]. In 
this paper, we present the results of an intervention strategy we implemented with the goal 
of honing students’ code understanding skills. For a period of two weeks, students in an 
introductory programming course were given practice that was focused on code 
comprehension and consisted mainly on reading, tracing, and making small changes to 
existing programs. Automatic Item Generation (AIG) was used to generate a set of practice 
exercises individualized to each student’s needs. We present the results of pre and post- 
assessments from the intervention group and a control group. Our results show the benefits 
of dedicating time to code understanding. 

 
BACKGROUND 

Several works have demonstrated that instruction focused on worked-examples is 
more effective for learning than instruction consisting of problem-solving. Kirschner, 
Sweller, and Clark [11] recommend providing students with worked-examples and process 
worksheets, which should provide a description of the steps they should go through when 
solving the problem as well as hints or rules of thumb that may help to successfully 
complete each step. In a similar effort, Van Gog [12] studies the effects of worked-examples 
compared to problem-solving and shows that it is not strictly necessary to alternate 
example study and problem solving but that example study only and example study 
alternated with problem-solving is more effective and efficient than problem-solving only.  

 
Venables et al.  [13] and Lopez at al. [14] design and analyzed an exam that students 

took at the end of an introductory course on programming. Both found that the ability of 
students to explain and trace code correlated positively with their ability to write code. 
Venables et al. concluded that when students are reasonably capable of both tracing and 
explaining, the ability to systematically write code emerges. Porter and Simon [15] 
evaluated the competency of students that have completed their first one or two courses in 
computer science and concluded that many students do not know how to program at the 
conclusion of their introductory courses. Lister et al. [16] evaluated students from seven 
countries at the conclusion of their CS1 course on two abilities: (i) predicting the outcome of 
a program, and (ii) completing a near-complete program. They noted that poor 
performance in one or both abilities might be an explanation for the fact that many students 
do not know how to program at the conclusion of their introductory courses. Similar studies 
in [2, 3] further tested students on both code comprehension skills as well as code writing 
skills of similar complexity. They showed that weaknesses in understanding and 
manipulating existing code correlate with students’ abilities to write code.    
 
 
 



PROBLEM FORMULATION 
The high-level goal for our study was to assess the impact of explicitly spending 

time on code understanding in a CS0 course.  Specifically, we seek to answer the following 
question: Do students who explicitly spend time on code reading and manipulation 
activities progress at a faster pace when learning to write code than students who do not? 
 

What is the output of the following program? 
for number in range(1, 13): 

    if (number % 2) == 0 and (number % 4) ==0: 

        print('Multiple of 2 and 4') 

    elif (number % 2) == 0: 

        print('Multiple of 2 only') 

    elif (number % 4) == 0: 

        print('Multiple of 4 only') 

    else: 

        print('None') 

 (a) 

Write a Python program for each of the following lists. The program should print what is indicated 
on the Output column, using the list in the List column. You will write a total of 3 programs. The first 
one is given for you as example. 

List  Output 

fruits = ['apples', 'oranges', 'pears', 'apricots', 'grapes'] All the fruits that start with ‘a’ 

cities = ['Rome', 'London', 'Paris', 'Berlin', 'Madrid', 'Lisbon'] All the cities that end with ‘n’ 

colors = ['red', 'green', 'blue',  'yellow', 'brown', 'cyan'] All the colors that start with ‘b’ 

animals = ['bear', 'python', 'peacock', 'kangaroo', 'platypus'] All the animals that start with ‘p’ 

Example: 

 
(b) 

Write a function that has a string parameter, w. If w starts with 'f' the function prints ‘fizz’. If word 
ends with 'z', the function prints ‘buzz’. If both conditions are true, the function prints ‘fizzbuzz’. 
Otherwise, the function prints the original value of w.  

Examples of what the function should print for different values of w: 
w output w output 

friend fizz fizz fizzbuzz 

quiz buzz futz fizzbuzz 

nice nice puzzle puzzle 

 

def fizzbuzz(w): 

(c) 

FIGURE 1. SAMPLE QUESTIONS GIVEN IN THE PRE-ASSESMENT: (A) CODE READING; (B) CODE MANIPULATION; 
(C) CODE WRITING. 

fruits = ['apples', 'oranges', 'pears', 'apricots', 'grapes'] 

for fruit in fruits: 

    if fruit[0] == 'a': 

        print(fruit) 

apples 

apricots 



METHODOLOGY 
Two sections of an introductory programming course (CS0 course) were used for 

the study. The course is taught at a four-year urban college and uses Python programming 
language. One section of the course was used to test an intervention strategy implemented 
with the goal of honing students’ code understanding skills. The other section was used as a 
control group. Students in both groups were given a pre-test to evaluate their code 
comprehension, code manipulation, and code writing competencies.  The pre-test was given 
past mid-semester, when students had already learned some basic programming. Figure 1 
shows some of the questions given in the pre-assessment. 

 
Automated Item Generation  

AIG is an approach for developing test-items or questions for exams, automatically 
by a program [18]. The most common AIG approach is based on the use of test-item 
templates with embedded variables and formulas. The variables and formulas in the 
template are resolved by a computer program with actual values to generate test-items. 
Thus, hundreds or even thousands of test-items can be generated with a single test-item 
template, as exemplified in Figure 2. The obvious advantage of an AIG system is its ability to 
produce high volumes of test-items and therefore numerous different tests with the same 
difficulty and quality. Current approaches to AIG vary by the method used for giving values 
to the variables: a text [19], mathematical equations [18, 20], and more. 

 

 

FIGURE 2. A CONCEPTUAL EXAMPLE OF AIG: IT SHOWS A TEST-ITEM TEMPLATE, THE ALGORITHM TO INSTANTIATE IT, 
AND TWO OF THE HUNDREDS OF QUESTIONS THAT CAN BE GENERATED WITH THIS TEMPLATE. 

 



AIG was used to generate a set of practice exercises individualized to each student’s 
needs in the intervention group. We incorporated basic AIG functionality into an existing 
self-assessment and practice tool for students learning computer programming [17]. The 
exercises were focused on code comprehension and consisted mainly on reading, tracing, 
and making small changes to existing programs. Students worked on their exercises for a 
period of two weeks. Some exercises were given to students as in-class lab assignments and 
others as homework assignments. Nothing else was covered during that period of time in 
the intervention group while the control group continued with the schedule as planned.  
The schedule was re-taken for the intervention group after the time dedicated to 
implementing the intervention strategy. A post-assessment was given to students in both 
groups near the end of the semester to evaluate them on the same skills than in the pre-test 
(with some overlap in content). At that point in the semester students are expected to be 
writing code. We were interested in observing whether there was any significant difference 
in the progress made in learning to code between the students from the two groups.  

 

 

FIGURE 3. PRE-TEST RESULTS: CONTROL GROUP 

CUMULATIVE SCORES BY LEVEL 

 

FIGURE 4. POST-TEST RESULTS: CONTROL GROUP 

CUMULATIVE SCORES BY LEVEL 

 

FIGURE 5. PRE-TEST RESULTS: INTERVENTION GROUP 
CUMULATIVE SCORES BY LEVEL 

 

FIGURE 6. POST-TEST RESULTS: INTERVENTION 
GROUP CUMULATIVE SCORES BY LEVEL 

 
RESULTS 

Figures 3 to 6 show the results obtained in the pre and post assessments from the 
control group and the intervention group, respectively. The stacked line charts depict the 
cumulative students’ scores by skill level: 1) read, 2) manipulate, and 3) write. Students 
have been anonymized (s1, s2, etc.). The evaluation instrument (quiz) for each skill level 
had a max score of 100. For most of the students code reading is the most dominant skill, 



followed by code manipulation, while code writing is the weakest one, which is in line with 
previous studies [2, 3, 13, 16].  

 
Both groups exhibit an improvement on all the skills towards the end of the course. 

However, students who explicitly spend time on code reading and manipulation exercises 
show a greater improvement than students who do not. All the students in the intervention 
group finished at a proficient level in code reading (Figure 6), while some in the control 
group are not (Figure 4).  A larger difference in results is observed for code manipulation 
and code writing. Students in the intervention group greatly improved in such skills, and 
can be considered proficient in both as well. In fact, as can be seen on figure 6, they are 
almost at the same level on all skills.  Although students in the control group also exhibit an 
improvement, the improvement is not that much for code manipulation and is minimal for 
code writing. Our results support the pedagogical research theories [4, 5, 6] that suggest 
relying more heavily on the study of worked-examples than on instruction consisting of 
problem solving. In our case we alternate example study with problem-solving, which as 
stated in [12] is more effective and efficient than problem-solving only. 

 
CONCLUSIONS AND FUTURE WORK 

We evaluated an intervention strategy implemented with the goal of honing 
students’ code understanding skills. AIG was used to generate a set of practice exercises 
individualized to each student’s needs. Results obtained from the intervention group and a 
control group show the benefits of dedicating time to code understanding. Students that 
participated in the intervention strategy show a greater improvement in learning to code 
over the students in the control group.   

 
Future work will focus on more comprehensive approaches to address code 

understanding skills in computer programming courses. We are interested in the 
tantamount to the worked-examples approaches discussed earlier [4, 5, 6, 7]. Further, we 
believe emphasis in code understanding skills is something that should continue all the way 
through high-level courses, not only in introductory ones. 

 
AIG is a convenient and helpful approach to automatically generate a large number 

of practice items, different for each student, but with the same difficulty and quality. By 
relieving the teacher from the burden of having to generate several practice questions for 
each student, it greatly facilitates an approach like the one presented in this paper. We are 
also working on AIG by investigating semantic, AI-based approaches that will allow a 
greater flexibility in the type of items that can be generated. 
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