
PRECURSOR SKILLS TO WRITING CODE.

Laura Zavala
Medgar Evers College | CUNY
1650 Bedford Ave. | Brooklyn, NY 11225
718-270-6128 | rzgutierrez@mec.cuny.edu

Benito Mendoza
New York City College of Technology | CUNY
300 Jay Street | Brooklyn, NY 11201
718.260.5885 | bmendoza@citytech.cuny.edu

ABSTRACT

Practice in programming courses is most of the time equated with
programming and more specifically with writing code. However, we believe that
more emphasis needs to be put in the precursor skills to writing code. Specifically,
that there are three phases that students should sequentially master in the process
of learning computer programming: code comprehension, code manipulation, and
code writing. Further, there are other companion skills, such as understanding
technical documentation (i.e., APIs), that should also be stressed in all of the three
phases and that are usually under-looked in CS1 courses. In this paper we present a
study conducted in both, an introductory and an advanced programming courses in
which we evaluate students in these competencies. The results obtained are in line
with our intuition that code comprehension, code manipulation, and code writing
are phases that students should sequentially master in the process of learning to
write programs.

INTRODUCTION

The need for considerable practice in CS1 courses is indisputable and widely
acknowledged. High failure rates abide in introductory computer programming
courses (CS1) all over the world with a pass rate estimated to be around 67.7%. The
literature abounds with research on pedagogies and innovative approaches for CS1
courses, specifically, active and collaborative learning approaches such as pair-
programming, peer-lead instruction, flipped classrooms, and live coding
[1][2][3][7][8][9]. The advantages of these innovative approaches cannot be
dismissed. However, the emphasis in programming courses is mainly in writing
code. This might be adequate for advanced, upper-level courses. However, for CS1
courses, the fact that code comprehension skills are a precursor to code writing
skills should not be ignored; practice of the former should be ensured before asking
students to do the latter.

Some practitioners have discussed the need for a reading before writing
approach in CS1 courses [4][10][11][12]. The underlying idea is inspired in the
observation that children learn to write after they have spent several years of
reading (or rather, being read to) and speaking the language. By the time they are

mailto:rzgutierrez@mec.cuny.edu
mailto:bmendoza@citytech.cuny.edu

asked to write, they have been exposed to the syntax and semantics of the language,
as well as different models of writing. The same underlying idea has been explored
in other problem solving oriented disciplines. For example, Sweller and Cooper [5]
compared the efficacy of a worked-examples approach versus a problem-solving
approach. In their experiments, some students learnt certain algebraic processes by
solving problems, while other students learnt the same algebraic processes by
studying complete solutions to those problems (i.e., worked examples). They found
that students who learned algebra with worked examples performed significantly
better than those who were asked to solve problems instead.

The analogous reading before writing approach in CS1 courses is more of a
reading before manipulating and manipulating before writing approach. Students
should be able to not only read code before they can write code, but also manipulate
code that is given to them (i.e., modify or use). Formally, there are three phases that
students should sequentially master in the process of learning to write programs:
code comprehension, code manipulation, and code writing. This paper presents the
results of a study conducted at two urban colleges with the goal of corroborating
this intuition.

Although it can be argued that code comprehension and manipulation work
is covered in CS1 courses through sample solutions, design roadmaps,
implementation hints, and starter code, the emphasis is, by far, on code writing.
Providing students with all these resources does not really constitute practice on
code comprehension and manipulation; it is not the main focus and students are
rarely or never assessed on these competencies. In addition to these competencies,
there are other skills, which we call companion skills that should also be stressed in
all three phases, many of which are usually under-looked in CS1 courses. Namely,
identifying programming constructs (variables, data types, expressions, function
definitions, function calls, parameters, etc.), explaining code (being able to verbally
explain what a piece of code does), understanding technical documentation (i.e.,
APIs), and refactoring existing code.

BACKGROUND

Linn and Clancy [12] emphasize the importance of learning patterns of
program design. They propose the use of programming case studies to teach
students program design skills. The authors reported significant improvement in
students’ design skills. In a similar effort, Kirschner, Sweller, and Clark [6]
recommend providing students with worked examples and process worksheets,
which should provide a description of the steps they should go through when
solving the problem as well as hints or rules of thumb that may help to successfully
complete each step.

In [4], an assessment developed to evaluate the programming competency of
students that have completed their first one or two courses in computer science is
presented. They established that many students do not know how to program at the
conclusion of their introductory courses. In the search for a cause to this problem,

Lister et al. [13] tested students from seven countries at the conclusion of their CS1
courses on two abilities: (i) predicting the outcome of a program, and (ii)
completing a near-complete program. The authors noted that poor performance in
one or both abilities might be an explanation for the fact that many students do not
know how to program at the conclusion of their introductory courses. This work is
closely related to that presented in this paper. An important difference is that they
only test students on code comprehension skills and speculate on a relation of those
skills to the ability of students to write code. The work presented in this paper
examines that assumption given that students were tested on both, code
comprehension skills as well as code writing skills of similar complexity.

PROBLEM FORMULATION

The high-level goal for the study presented in this paper was to collect initial
data to shed light into the belief that (1) code comprehension, (2) code
manipulation, and (3) code writing are phases that students should sequentially
master in the process of learning to write programs. The specific goal was to answer
the following questions:

a) Do (most or all) students that show proficiency in a given skill also possess
proficiency in the skills that precede it in the sequence?

b) Do (most or all) students who show deficiency in, or lack of, a given skill, also
lack the skills that follow it in the sequence?

METHODOLOGY

Students from both, an introductory and an advanced programming courses
were evaluated on their code comprehension, code manipulation, and code writing
competencies, as well as their companion skills. Code comprehension is the ability
of students to understand a code fragment or a program. Ways to assess this skill
include asking students to (i) select the piece of code, from a set of choices, that
performs a specific task; (ii) describe what a program does, (iii) indicate what is the
value returned by calling a function; (iv) indicate what a program would display on
screen when it runs; (v) indicate what the value of one or more variables is after
executing a program; and (vi) identify the part of a program where a specific action
is carried. Code manipulation involves using or modifying existing code. The skill
can be assessed with exercises where students are asked to: (i) complete a piece of
code (either by writing the missing code, or choosing it out of a set of choices), (ii)
write function calls to provided functions so that a specific result is obtained; (iii)
build a program from a set of fragments of code, not all of which might be part of the
solution; (iv) reorder a scrambled program (a.k.a. Parson's programming puzzles
[13]). Code writing is the ability of students to write code for a given task. The
default method of assessment is to provide students with the specification of a
problem, for which they have to write a program.

Companion skills include: (i) identifying programming constructs (variables,
data types, expressions, function definitions, function calls, parameters, etc.), (ii)

explaining code (being able to verbally explain what a piece of code does), (iii)
understanding technical documentation (i.e., APIs), and (iv) refactoring existing
code.

Students in the introductory course were evaluated on conditional
statements in the Python language. Students in the advanced course were evaluated
on conditional statements, arrays, and loops. Additionally, students were also tested
on their ability to identify elements of a program (terminology), use APIs, and
refactor an existing program.

A person is eligible to be a US Representative who is at least 25

years old and has been a US citizen for at least 7 years.

The program below asks the user for his/her age and years of
citizenship to display the corresponding message related to
the eligibility for US Representative. The program has
been scrambled, though. Reorder the program so that it
performs as described.

 print("You are eligible to be US Representative.")
citizenship = int(input("For how many years have you
been US citizen? "))
else:
age = int(input("What is your age? "))
 print("You are NOT eligible to be US
Representative.")
if (age >= 25 and citizenship >= 7):

(a)

A person is eligible to be a
US Senator who is at least
30 years old and has been a
US citizen for at least 9
years.

Write a Python program
that will ask the user to
enter his/her age and length
of citizenship. Then, it will
print the appropriate

message, one of the
following:

 You are eligible for the
Senate

 You are NOT eligible for
the Senate.

(b)

FIGURE 1. QUESTIONS GIVEN TO THE INTRODUCTORY PROGRAMMING COURSE: (A) CODE MANIPULATION; (B)
CODE WRITING

What is the output of the following program? In other
words, what is printed to the screen when you run it?

Assume the file numbers.txt contains the numbers 1
through 30

import java.util.Scanner;
import java.io.File;
try {
 Scanner reader = new Scanner(new
 File("numbers.txt"));
 while (reader.hasNext()) {
 int foo = reader.nextInt();
 if ((foo % 2)>0)
 System.out.print(foo + "\t");
 }
} catch (IOException e) {
 System.out.print("Error with input file")
}

A file called cs355students.txt

contains a list of students and

their corresponding GPA's. Each

line in the file contains the name

of the student followed by his/her

GPA.

Write a Java program that will

print the best students from that

list (the ones with a high GPA).

Your program should read the

entries in the file and print to

screen the names of only those

students with a GPA greater than

or equal to 3.0

(a) (b)

 FIGURE 2. QUESTIONS GIVEN TO THE ADVANCED PROGRAMMING COURSE: (A) CODE
COMPREHENSION; (B) CODE WRITING

The assessment was administered by phases: first, the code writing and use
of APIs exercises, then the code manipulation and refactoring exercises, and at the
end, the code reading and terminology questions. Students worked on each phase
one at a time and had no access to the questions on the other sections. Figures 1 and
2 show some of the questions given to the introductory programming course and
the advanced programming course, respectively. Figure 3 shows some of the
companion skills questions.

From the code above provide the line number(s)
containing the program constructs indicated. If there is
more than one line, please separate the numbers with
commas (i.e., 1, 2, 3).

i) a Boolean expression
ii) an arithmetic expression
iii) assignment statement with a literal

(a)

Assume a text file called words.txt contains a
string on each line. Write a piece of code to read
the information on the file and print to screen
only the words that are palindromes. A
palindrome is a word that reads the same
backward or forward. For example: stressed,
rewarder, noon, civic, radar.

public String readLine()

A member function of BufferedReader, reads a line of
text and returns a String containing the contents of
the line, or null if the end of the stream has been
reached

public int length()

A member function of String, returns the length of a
string, that is, the number of characters in the string.

public StringBuilder reverse()

This method returns a reference to this object with its
character sequence reversed.

StringBuilder(String str)

Constructs a string builder initialized to the contents of
the specified string.

(b)

FIGURE 3. EXAMPLES OF COMPANION SKILLS QUESTIONS: (A) IDENTIFYING PROGRAMMING CONSTRUCTS AND (B)
UNDERSTANDING TECHNICAL DOCUMENTATION (I.E., APIS).

RESULTS

The stacked line charts in Figures 4 and 5, in which the cumulative scores by
level are plotted, show that code reading is the most dominant skill, followed by
code manipulation, while code writing is the weakest one. The same pattern is
observed in both, the introductory and the advanced courses.

FIGURE 4. INTRODUCTORY PROGRAMMING COURSE

CUMULATIVE SCORES BY LEVEL

FIGURE 5. ADVANCED PROGRAMMING COURSE

CUMULATIVE SCORES BY LEVEL

CONCLUSIONS

Based on the expressed need of a reading before writing approach for CS1
courses, an analogous approach has been presented that is more of a reading before
manipulating and manipulating before writing approach. Students should be able to
not only read code before they can write code, but also they should be able to
manipulate code that is given to them. To shed light on the validity of this claim, a
small-scale study was conducted where students’ code comprehension, code
manipulation, and code writing skills in two different colleges were evaluated. The
results obtained are in line with the original premise that code comprehension, code
manipulation, and code writing are phases that students should sequentially master
in the process of learning computer programming. The experiment was conducted
with computer science students in both, an introductory and an advance course at
different institutions. The fact that the same pattern is observed in both further
supports our claims.

REFERENCES

[1] Leo Porter and Beth Simon, “Retaining nearly one-third more majors with a trio of instructional best

practices in CS1,” in Proceedings. ACM Computer Science Education (SIGCSE '13). 44th Annual

Technical Symposium (2013): 165-170, ACM.

[2] A. Robins, J. Rountree, and N. Rountree. “Learning and teaching programming: A literature review,”

Computer Science Education 13, no. 2 (2003): 137–172.

[3] A. Sanwar, “Effective teaching pedagogies for undergraduate computer science,” Mathematics and

Computer Education 39, no. 3 (2005): 243–257.

[4] McCracken, M., V. Almstrum, D. Diaz, M. Guzdial, D. Hagen, Y. Kolikant, C. Laxer, L. Thomas, I.

Utting, T. Wilusz, “A Multi-National, “Multi-Institutional Study of Assessment of Programming

Skills of First- year CS Students,” SIGCSE Bulletin 33, no. 4 (2001): 125- 140.

[5] Sweller, J., & Cooper, G. A., “The use of worked examples as a substitute for problem solving in

learning algebra,” Cognition and Instruction 2, no. 1 (1985): 59–89.

[6] Kirschner, P.A., Sweller, J., and Clark, R.E., “Why minimal guidance during instruction does not

work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-

based teaching,” Educational Psychologist 41, no. 2 (2006): 75-86.

[7] Judith D. Wilson, Nathan Hoskin, and John T. Nosek, “The benefits of collaboration for student

programmers,” in Proceedings. ACM Computer Science Education (SIGCSE '93). 24th Annual

Technical Symposium (1993): 165-170, ACM.

[8] Henry M. Walker. 2011, “A lab-based approach for introductory computing that emphasizes

collaboration,” in Proceedings. Computer Science Education Research Conference (2011): 21-31,

Open Universiteit, Heerlen.

[9] Marc J. Rubin. 2013, “The effectiveness of live-coding to teach introductory programming,” in

Proceedings. ACM Computer Science Education (SIGCSE '13), 44th Annual Technical Symposium

(2013): 651-656, ACM.

[10] Mark Guzdial and Judy Robertson, “Too much programming too soon?,” Communications of the ACM

53, no. 3 (March 2010): 10-11, ACM.

[11] Mark Guzdial. 2015, “What's the best way to teach computer science to beginners?,” Communications

of the ACM 58, no. 2 (January 2015): 12-13, ACM.

[12] Marcia C. Linn and Michael J. Clancy. 1992, “The case for case studies of programming problems,”

Communications of the ACM 35, no. 3 (March 1992): 121-132, ACM.

[13] Dale Parsons and Patricia Haden, “Parson's programming puzzles: a fun and effective learning tool

for first programming courses,” in Proceedings of the 8th Australasian Conference on Computing

Education (ACE '06), Denise Tolhurst and Samuel Mann (Eds.), Vol. 52 (2006): 157-163, Australian

Computer Society, Inc., Darlinghurst, Australia, Australia.

