ARCH 1110

WEEK NINE: CUBE PART 2

NYCCT
DEPARTMENT OF ARCHITECTURAL TECHNOLOGY
\square

DESIGN I : FOUNDATIONS : CUBE ASSIGNMENT

CUBE PROJECT: Use geometric proportions to derive a 6-sided form which addresses a given use.

OBJECTIVE: Students will learn to move from 2D lines into 3D form.

DESCRIPTION: The student will use the construction lines to design new abstract three dimensional shapes.

Lab \& Homework: EXERCISE 7

PROCESS:

1 Create an exploded isometric sectional drawing of your cube.
2 First draw an isometric of your foam cube.
3 Select sectional cuts approximately $1 / 2^{\prime \prime}$ from the surface of each face.
4 Use lineweights, hatching and colored lead to identify the cross sectional areas.
5 Use construction lines and heavy dashed lines to extend (explode) the section cuts away from the cube to illustrate the section clearly.
$6 \quad$ Final drawings should be on vellum paper sized to show all six sectional cuts clearly and with no overlaps on the original cube at the center of the drawing.

SKILLS: 3D Drafting, composition, and problem solving

5

Paraline Drawings

Paraline drawings include a subset of orthographic projections known as axonometric projections-the isometric, dimetric, and trimetric-as well as the entire class of oblique projections. Each type offers a slightly different viewpoint and emphasizes different aspects of the drawn subject. As a family, however, they combine the measured precision and scalability of multiview drawings and the pictorial nature of linear perspective. Because of their pictorial quality and relative ease of construction, paraline drawings are appropriate for visual izing an emerging idea in three dimensions early in the design process. They are capable of fusing plan, elevation, and section into a single view and illustrating threedimensional patterns and compositions of space. Portions of a paraline drawing can be cut away or made transparent to see inside and through things, or expanded to illustrate the spatial relationships between the parts of a whole. At times, they can even serve as a reasonable substitute for a bird's-eye perspective.

There are several types of paraline drawings, each named after the method of projection that is used to develop them. Two of the most common in architectural drawing are discussed in this chapter: isometric and oblique drawings.

In both isometric and oblique drawings:

- All parallel lines in the subject remain parallel in the drawing.
- All lines parallel to the principal $X-Y-Z$ - axes can be measured and drawn to scale.

The images that emerge from oblique projections are distinct from isometric views that develop from orthographic projection. The ease with which we can construct an oblique drawing has a powerful appeai. If we orient a principal face of the subject parallel to the picture plane, its shape remains true and we can draw it more easily. Thus, oblique views are especially convenient for representing an object that has a curvilinear, irregular, or complicated face.

Plan Obliques

- The principal set of horizontal planes oriented parallilel to the picture plane is emphasized and can be represented in true size, shape, and proportion.
- Plan views can be utilized as base drawings - a definite advantage when drawing horizontal planes with circular or complex shapes.
- Plan obliques have a higher angle of view than isometric drawings.

Isometric Drawings

- All three principal sets of planes share equal emphasis.
- The angle of view is slightly lower than that of plan obliques.
- Plans and elevations cannot be used as base drawings.

Elevation Obliques

- The principal set of vertical planes oriented parallel to the picture plane is emphasized and can be represented in true size, shape, and proportion. The other vertical set and the principal horizontal set of planes are both foreshortened.
- An elevation can be used as a base drawing. This view should be of the longest, the most significant, or the most complex face of the object or building.

Plan obliques present a higher angle of view than isometric drawings and emphasize the set of horizontal planes by revealing their true size, shape,
and proportions.

To construct a plan oblique, begin with a plan drawing and rotate it to the desired angle relative to a horizontal on the drawing sheet or board.

- When drafting a plan oblique, the triangles encourage the use of $45^{\circ}-45^{\circ}$ and $30^{\circ}-60^{\circ}$ angles in establishing the orientation of the principal horizontal planes.
- Note that we can emphasize one of the sets of vertical planes over the other or show them to be of equal importance by varying this angle.

- In $45^{\circ}-45^{\circ}$ plan oblique, both principal sets of vertical planes receive equal emphasis.
- In a $30^{\circ}-60^{\circ}$ plan oblique, one principal set of vertical planes receives more emphasis than the other.

From the rotated plan view, we project the vertical edges and planes of the subject.

- We usually lay out and draw these vertical dimensions to their true lengths.
To offset the appearance of distortion, we may reduce the vertical dimensions to $1 / 2,2 / 3$, or $3 / 4$ of their true lengths.

elevation obliques

There are three basic approaches to constructing the entire class of paraline drawings. When constructing and presenting a paraline drawing, keep in mind that paraline views are easiest to understand if vertical lines in space are also oriented vertically on the drawing surface.

- The first is a subtractive approach appropriate for relatively simple forms. It involves constructing a paraline view of a transparent rectangular box that encompasses the entire volume of the subject, and then working in a subtractive manner to remove material and reveal the form.
- A second approach, appropriate for a composition of discrete forms, reverses the procedure of the subtractive approach. It requires drawing a paraline view of the parent form first, and then adding the subordinate forms.
- The third approach is appropriate for irregularly shaped forms. It begins with a paraline view of a horizontal plane of the subject or the profile of a vertical section cut. We can then extrude the shape vertically or extend it back into the depth of the drawing.

ARCH 1110

WEEK NINE: CUBE PART 2

STUDENT WORK SAMPLES

