Professor K. Poirier

ALC Math Department Liaison
Spring 2017

Atrium Learning Center Math Tutors' Cheat Sheet MAT 1190 - Reasoning and Logic

This document summarizes material from Sections 1-1, 3-1, and 3-2 of Sobecki and Bluman's Math in Our World (3rd Edition, McGraw-Hill) as is relevant for MAT 1190. It should be used by ALC math tutors to familiarize themselves with the basics in order to tutor MAT 1190 students.

Section 1-1: The Nature of Mathematical Reasoning

Chapter 1 focuses on problem solving; only Sections 1-1 and 1-2 are covered in MAT 1190. Since the material in Section 1-2 should already be familiar to tutors, we focus here only on Section 1-1.

The primary focus of this section is the distinction between inductive and deductive reasoning. Tutors should already be aware of the distinction though they may not know the formal language.

- Inductive reasoning is the process of reasoning that arrives at a general conclusion based on the observation of specific examples (think: generalizing or predicting by recognizing a pattern or a trend).
- Deductive reasoning is the process of reasoning that arrives at a general conclusion based on previously accepted general statements (think: generalizing using formal proofs). It does not rely on specific examples.

Often, one might use inductive reasoning to recognize a pattern in order to form a conjecture and then use inductive reasoning to prove the conjecture. Question \#4 on the final exam review sheet, copied here, is an example of these uses.

Pick a number, subtract 5, multiply the answer by 4, divide the answer by 2, and subtract 2 times the original number
(a) Use inductive reasoning to find a rule that relates the number selected to the final answer.
(b) Use deductive reasoning to prove your conjecture.

To answer (a), we will select a few numbers (somewhat at random, though small positive integers will be easiest to work with), apply the operations, and see if we can find a pattern. If we don't see a pattern right away, we can select a few more numbers.

- Input: 1; output: $\frac{(1-5) \times 4}{2}-2 \times 1=-10$
- Input: 2; output: $\frac{(2-5) \times 4}{2}-2 \times 2=-10$
- Input: 3; output: $\frac{(3-5) \times 4}{2}-2 \times 3=-10$

Since the output for three different inputs is always -10 , an obvious guess is that the output is always -10, no matter what the input is. We can make this a precise conjecture using a variable as an input; here, we let a represent any real number. Then our conjecture is:

$$
\frac{(a-5) \times 4}{2}-2 \times a=-10 .
$$

To prove this conjecture for (b), we perform the operations step-by-step to the input a as follows:

$$
\begin{align*}
a & \\
a-5 & \\
(a-5) \times 4 & =4 a-20 \tag{1}\\
\frac{4 a-20}{2} & =2 a-10 \\
(2 a-10)-2 a & =-10
\end{align*}
$$

This shows us that no matter what number the input a is, the output will always be -10 .

Chapter 3: Logic

Chapter 3 focuses on logic; only Sections 3-1 and 3-2 are covered in MAT 1190. Section 3-1 lays out basic definitions and rules and Section 3-2 covers truth tables.

A statement (also called a proposition in other texts) is a declarative sentence that is either true or false, but not both.

That is, a statement must have a truth value, usually indicated as T or F. Here are some examples.
(a) " $3>5$ " is an example of a statement because we can check its truth value.
(b) " $x>5$ " is not an example of a statement because we cannot check its truth value since we don't know what the value of x is.
(c) "What time does the movie start?" is not an example of a statement because it is a question; it cannot have a truth value.
(d) "That movie was great," is not an example of a statement because it is an opinion; it does not have an objective truth value.
(e) "Janelle Monáe is in the movie Hidden Figures," is an example of a statement because we can check its truth value.

Of the two examples that are statements, (a) is false and (b) is true.
Often we use propositional variables to represent specific propositions. This helps when we want to form compound propositions (new propositions created from old ones) and check their truth values. Common variables are p and q.

Given propositions p and q, relevant examples of compound propositions are:

- negation $\sim p$ (sometimes denoted $\neg p$), read as "not p,"
- conjunction $p \wedge q$, read as " p and q,"
- disjunction $p \vee q$, read as "either p or q (or both),"
- conditional $p \rightarrow q$, read as "if p, then q," and
- buconditional $p \leftrightarrow q$, read as " p, if and only if q " (equivalent to $(p \rightarrow q) \wedge(q \rightarrow p)$).

For example, if p represents the statement " $3>5$ " and q represents the statement "Janelle Monáe is in the movie Hidden Figures," then

- $\sim p$ represents " 3 is not greater than 5 " (equivalently, " $3 \leq 5$ "),
- $p \wedge q$ represents " $3>5$ and Janelle Monáe is in the movie Hidden Figures,"
- $p \vee q$ represents "either $3>5$ or Janelle Monáe is in the movie Hidden Figures (or both),"
- $p \rightarrow q$ represents "if $3>5$ then Janelle Monáe is in the movie Hidden Figures,"
- $p \leftrightarrow q$ represents " $3>5$ if and only if Janelle Monáe is in the movie Hidden Figures."

Truth tables help us determine truth values of compound statements in terms of the truth values that make them up. For the relevant examples above, we have the following table:

p	q	$\sim p$	$p \wedge q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Often students struggle the most with understanding the $p \rightarrow q$ column. It can be helpful to think of $p \rightarrow q$ as meaning "if p is true then q must also be true." Therefore, $p \rightarrow q$ is true if p and q are both true and false if p is true but q is not true. The next two rows in this column might present more of a challenge. One way to think of it is like this. This statement does not make any claim at all unless p is true. Therefore, if p is false, it doesn't matter what the truth value of q is; it is impossible for $p \rightarrow q$ to be false, therefore it must be true.

Using these truth values, we can make truth tables for other compound statements, building up step-by-step. The statement $\sim p \wedge(p \rightarrow q)$ from Question $\# 3$ of the final exam review sheet has the following truth table.

p	q	$\sim p$	$p \rightarrow q$	$\sim p \wedge(p \rightarrow q)$
T	T	F	T	F
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

