Review Sheet for Test #3

Express all answers in simplest form. Round to 4 decimal places where necessary.

- 1) For the given expression: state the quadrant the angle is located, the reference angle, and the exact value.
 - a) $tan\left(-\frac{4\pi}{3}\right)$

- c) $csc\left(\frac{7\pi}{6}\right)$

- a) $tan\left(-\frac{4\pi}{3}\right)$ b) $sec\left(\frac{15\pi}{4}\right)$ 2) Simplify the complex fraction: $\frac{\frac{10}{b} \frac{7}{a}}{\frac{2}{+\frac{3}{2}}}$
- 3) Put the equation of the circle in standard form and identify the center and radius. Then graph the circle, labeling 4 points.
 - $y^2 2y + 14x + x^2 23 = 0$
- 4) Divide and express in standard complex number form: $\frac{3+9i}{6-6i}$

$$x + 3y - 6z = 7$$

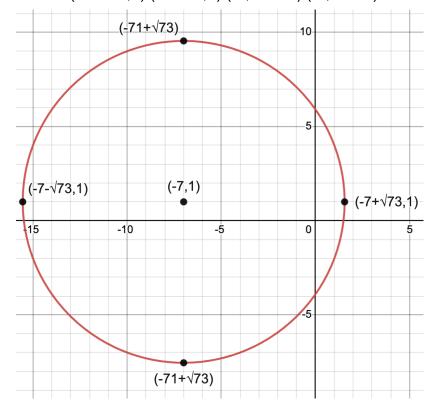
5) Solve the system of equations: 2x - y + 2z = 0

$$x + y + 2z = -1$$

- 6) Solve for the roots: $y = 5x^2 + 3x 15$
- 7) Evaluate: a) $Log_7\left(\frac{1}{49}\right)$ b) $Log_{11}\left(\sqrt[4]{11}\right)$
- c) $Log_5(25\sqrt[3]{5})$

- 8) Solve: a) $7^{3x} = 49,395$ b) $e^x = 89$ 9) Express as an expanded logarithm: $Log\left(\frac{x^2}{v^3\sqrt{z^9}}\right)$
- 10) Given right triangle ABC, C is a right angle, c = 8.5, and b = 1.9.
- a) Calculate a
- b) Calculate *m*∢*A*
- c) Calculate $m \not \triangleleft B$.
- 11) If $\csc(\theta) = \frac{12}{r}$ and $\cos(\theta) < 0$, find the exact values of 5 remaining trigonometric ratios for θ .
- 12) $\theta = \frac{4\pi}{3}$
- a) Name an angle, in degrees, that is negative and coterminal to θ .
- b) Name an angle, in degrees, that is positive and coterminal to θ .
- c) What quadrant does θ lie?
- 13) a) In $\triangle POR$, $\triangleleft P = 60^{\circ}$, $\triangleleft O = 90^{\circ}$, and PR = 42 Find the exact value of the measure of \overline{OR} .
 - b) In ΔPQR , $\sphericalangle P=30^{o}$, $\sphericalangle Q=90^{o}$, and PQ=17 Find the exact value of the measure of \overline{PR} .
 - c) In ΔPQR , $\sphericalangle P = 45^{\circ}$, $\sphericalangle Q = 90^{\circ}$, and PR = 22 Find the exact value of the measure of \overline{PQ} .
- 14) The angle of depression from the top of a lighthouse to a boat on the water is 24°. If the boat is 458 feet away from the base of the lighthouse, how tall is the lighthouse?
- 15) Zelda is flying a kite and lets out 54 feet of string. The angle of elevation of the string is 49°. How high is the kite flying?

<u>Answers</u>


1) a) QII,
$$60^{\circ}$$
, $-\sqrt{3}$ b) QIV, 45° , $\sqrt{2}$ c) QIII, 30° , -2

b) QIV,
$$45^{\circ}$$
, $\sqrt{2}$

2)
$$\frac{10a-7b}{2b+3a}$$

3)
$$(x + 7)^2 + (y - 1)^2 = 73$$
 Center: (-7,1) Radius: $\sqrt{73}$

Points: $(-7+\sqrt{73},1)(-7-\sqrt{73},1)(-7,1+\sqrt{73})(-7,1-\sqrt{73})$

4)
$$-\frac{1}{2} + 1$$

$$6) x = \frac{-3 \pm \sqrt{309}}{10}$$

7) b)
$$\frac{1}{4}$$

7) c)
$$\frac{7}{3}$$

8) a)
$$x = 1.851337$$

8) b)
$$x = 4.489$$

9)
$$2Log(x) - 3Log(y) - \frac{9}{2}Log(z)$$

10) a) BC = 8.285 b)
$$\langle A = 77.086^{\circ}$$
 c) $\langle B = 12.914^{\circ}$

b)
$$\angle A = 77.086^o$$

c)
$$\angle B = 12.914$$

- 11) $\sin(\theta) = \frac{5}{12}$, $\cos(\theta) = -\frac{\sqrt{119}}{12}$, $\tan(\theta) = -\frac{5}{\sqrt{119}}$, $\sec(\theta) = -\frac{12}{\sqrt{119}}$, $\cot(\theta) = -\frac{\sqrt{119}}{5}$
- 12) a) -120° b) 600° c) Q3
- 13) a) $QR = 21\sqrt{3}$ b) $PQ = \frac{34}{\sqrt{3}}$ c) $QR = \frac{22}{\sqrt{2}}$

14) 203.9 feet

15) 40.8 feet