Assignment Test3practice due 04/23/2020 at 09:09pm EDT

Problem 1.

1. (10 points) Library/Union/setDervOptimization/4-5-23.pg

Find the absolute maximum and absolute minimum values of the function

$$f(x) = x^3 + 12x^2 - 27x + 11$$

over each of the indicated intervals.

- (a) Interval = [-10, 0].
- 1. Absolute maximum = _____
- 2. Absolute minimum = _____
- (b) Interval = [-7, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum = _____
- (c) Interval = [-10, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum = _____

Correct Answers:

- 497
- 11
- 445
- −3
- 497
- -3

Problem 2.

2. (10 points) Library/UVA-Stew5e/setUVA-Stew5e-C03S11-LinAppr ox/3-11-22.pg

Let $y = e^{x/4}$.

Find the differential dy when x = 4 and dx = 0.5

Find the differential dy when x = 4 and dx = 0.02

Correct Answers:

- 0.339785228557381
- 0.0135914091422952

Problem 3.

 $\textbf{3. (10 points)} \ \texttt{Library/Hope/Calc1/03-11-Differentials/Differentials-04/Differentials-04.pg}$

The figure shows how a function f(x) and its linear approximation (i.e., its tangent line) change value when x changes from x_0 to $x_0 + dx$.

Suppose $f(x) = x^2 + 4x$, $x_0 = 3$ and dx = 0.01. Your answers below need to be very precise, so use many decimal places.

(a) Find the change $\Delta f = f(x_0 + dx) - f(x_0)$.

 $\Delta f = \underline{\hspace{1cm}}$

(b) Find the estimate (i.e., the differential) $df = f'(x_0) dx$.

df = _____

(c) Find the approximation error $|\Delta f - df|$.

Error = _____

(Click on graph to enlarge)

Correct Answers:

- 0.1001
- 0.1
- 0.0001

Problem 4.

1

4. (10 points) Library/UVA-Stew5e/setUVA-Stew5e-C04S02-MeanVal Thm/4-2-13a.pg

Consider the function $f(x) = \frac{1}{x}$ on the interval [4,7].

(A) Find the average or mean slope of the function on this interval.

Average Slope = _____

(B) By the Mean Value Theorem, we know there exists a c in the open interval (4,7) such that f'(c) is equal to this mean slope. Find all values of c that work and list them (separated by commas) in the box below.

List of values: ______

- -0.0357142857142857
- 5.29150262212918

Problem 5.

5. (5 points) Library/UCSB/Stewart5_4_4/Stewart5_4_4_10.pg

Find the limit. Use l'Hospital's Rule if appropriate. Use INF to represent positive infinity, NINF for negative infinity, and D for the limit does not exist.

• -0.2

Problem 6.

Use L'Hôpital's Rule (possibly more than once) to evaluate the following limit

$$\lim_{x \to \infty} \left(\frac{14x^3 + 5x^2}{12x^3 - 11} \right) = \underline{\hspace{1cm}}$$

If the answer equals ∞ or $-\infty$, write INF or -INF in the blank. *Correct Answers:*

• 1.16666666666667

Problem 7.

7. (10 points) Library/ASU-topics/setImplicitDerivatives/5-5-1.pq

The radius of a spherical balloon is increasing at a rate of 2 centimeters per minute. How fast is the surface area changing when the radius is 12 centimeters?

Hint: The surface area is $S = 4\pi r^2$.

Rate of change of surface area =

Correct Answers:

• 603.18578948928

Problem 8.

8. (20 points) Library/ASU-topics/setSecondDerivative/4-4-72.p

Suppose that

$$f(x) = \frac{2x^2}{x^2 + 25}.$$

- (A) List all the critical values of f(x). Note: If there are no critical values, enter 'NONE'.
- (B) Use interval notation to indicate where f(x) is increasing.

Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol. If there is no interval, enter 'NONE'.

Increasing: _____

(C) Use interval notation to indicate where $f(x)$ is decreas-
ing.
Decreasing:
(D) List the x values of all local maxima of $f(x)$. If there are
no local maxima, enter 'NONE'.
x values of local maximums =
(E) List the x values of all local minima of $f(x)$. If there are
no local minima, enter 'NONE'.
x values of local minimums =
(F) Use interval notation to indicate where $f(x)$ is concave
up.
Concave up:
(G) Use interval notation to indicate where $f(x)$ is concave
down.
Concave down:
(H) List the x values of all the inflection points of f . If there
are no inflection points, enter 'NONE'.
x values of inflection points =
(I) Find all horizontal asymptotes of f , and list the y values
below. If there are no horizontal asymptotes, enter 'NONE'
y values of horizontal asymptotes =
(J) Find all vertical asymptotes of f , and list the x values be-
low. If there are no vertical asymptotes, enter 'NONE'
x values of vertical asymptotes =
(K) Use all of the preceding information to sketch a graph of
f. When you're finished, enter a "1" in the box below.
Graph complete:
Correct Answers:
• 0
• (0,infinity)
• (-infinity, 0)
• none
• 0
• (-2.88675134594813,2.88675134594813)
• (-infinity,-2.88675134594813) U (2.88675134594813,infinity
• -2.88675134594813 , 2.88675134594813
• 2
• none
• 1
Problem 9.

9. (20 points) Library/ASU-topics/setSecondDerivative/4-4-50.p

Suppose that $f(x) = x^4 - 3x^3$.

- (A) List all the critical values of f(x). Note: If there are no critical values, enter 'NONE'.
- (B) Use interval notation to indicate where f(x) is increasing.

Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the union symbol.

Increasing:

(C) Use interval notation to indicate where $f(x)$ is decreas-
ing.
Decreasing:
(D) List the x values of all local maxima of $f(x)$. If there are
no local maxima, enter 'NONE'.
x values of local maximums =
(E) List the x values of all local minima of $f(x)$. If there are
no local minima, enter 'NONE'.
x values of local minimums =
(F) Use interval notation to indicate where $f(x)$ is concave
up.
Concave up:
(G) Use interval notation to indicate where $f(x)$ is concave
down.
Concave down:

 $Generated\ by\ \textcircled{\textcircled{c}} WeBWorK,\ http://webwork.maa.org,\ Mathematical\ Association\ of\ America$

- (H) List the x values of all the inflection points of f. If there are no inflection points, enter 'NONE'.
- x values of inflection points = _____
- (I) Use all of the preceding information to sketch a graph of f. When you're finished, enter a "1" in the box below.

Correct Answers:

- 0, 2.25
- (2.25, infinity)
- (-infinity, 2.25)
- none
- 2.25
- (-infinity,0) U (1.5,infinity)
- (0,1.5)
- 0, 1.5
- 1