Sec 7.4: Graphing Quadratic Functions

Basic graph: the parabola $y = x^2$, with vertex at the the origin (0,0):

Vertical shifts: $y = x^2 \pm k$

If a constant k is added or subtracted to/from x^2 , that shifts the graph of $y = x^2$ vertically:

- The graph of $y = x^2 + k$ is just the graph of $y = x^2$ shifted **up** k units.
- The graph of $y = x^2 k$ is just the graph of $y = x^2$ shifted **down** k units.

- Read Sec 7.4, pp605-606 (Examples 1 and 2)

Example 1: Shown are the graphs of $y = x^2 + 2$ and $y = x^2 - 5$. Label the vertex, the *y*-intercept, and the *x*-intercepts (if any) on each graph.

- To find the *y*-intercept of a graph, plug in x = 0.
- To find the x-intercept(s), solve the equation y = 0 for x.

Horizontal shifts: $y = (x \pm h)^2$

If a constant h is added or subtracted to/from x and then squared, that shifts the graph of $y=x^2$ horizontally:

- The graph of $y = (x h)^2$ is the graph of $y = x^2$ shifted **right** h units.
- The graph of $y = (x+h)^2$ is just the graph of $y = x^2$ shifted **left** h units.
 - Read Sec 7.4, pp607-608 (Examples 3 and 4)

Example 2: Shown are the graphs of $y = (x-4)^2$ and $y = (x+2)^2$. Label the vertex, the *y*-intercept, and the *x*-intercepts (if any) on each graph.

Vertical and horizontal shifts: $y = (x \pm h)^2 \pm k$

- The graph of a function of the form $y = (x \pm h)^2 \pm k$ is a parabola which is
 - shifted vertically k units (up or down depending on the sign in front of the vertical shift $k), \ and$
 - shifted horizontally h units (left or right depending on the sign in front of the horizontal shift k)

Example 3: Shown are the graphs of $y = (x - 4)^2 + 2$ and $y = (x + 3)^2 - 5$. Label the vertex and the *y*-intercept on each graph. How could you find the *x*-intercepts?

"Upside-down" parabolas: $y=-(x\pm h)^2\pm k$

- The negative sign flips the basic parabola shape upside-down, i.e., so that it opens downward
- Read Sec 7.4, Example 8

Example 4: Shown are the graphs of $y = -x^2$, $y = -(x-4)^2$ and $y = -(x-4)^2 + 2$.

Sec 7.5: Writing a Quadratic in the form $y = (x \pm h) \pm k$

Now given any quadratic $y = x^2 + bx + c$, we can write it in the form $y = (x \pm h)^2 \pm k$ by completing the square!

Example 5: Suppose we want to sketch the graph of $y = x^2 + 8x + 13$.

1. Write $y = x^2 + 8x + 13$ in the form $y = (x \pm h)^2 \pm k$ by completing the square:

$$y = x^2 + 8x + 13 = (x^2 + 8x +) + 13 =$$

- 2. Identify the horizontal and vertical shifts of the graph, and hence the vertex of the parabola:
 - horizontal shift:
 - vertical shift:
 - vertex:
- 3. Identify the *y*-intercept of the graph:
- 4. Identify the *x*-intercepts of the graph by using the quadratic formula:

5. Use this information to sketch the graph of $y = x^2 + 8x + 13$:

