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page 20 to cancel all common factors of 2 in m and n. That said, we square both
sides of

√
2 = m

n to get 2 = m2

n2 , so that m2 = 2n2. Thus m2 is even and therefore
m is even. This implies n is odd. Now since m is even, then m = 2k for some
positive integer k, and m2 = 4k2. Hence the equation m2 = 2n2 may be written
as 4k2 = 2n2, which is the same as 2k2 = n2. Now n2 is even (it is equal to 2k2),
and therefore n must be even, contradicting the fact that n is odd, so

√
2 cannot

be rational after all.
The following proof is in essence a generalization of this argument, with the

fundamental theorem of arithmetic replacing the argument using "even and odd".

Proof. Since n > 1, let the prime decomposition of n be expressed as a product
of powers of distinct primes. (For example, 72 = 2332, 3375 = 3353, etc.) Consider
the case where n is the product of powers of three distinct primes: n = pa

1p
b
2p

c
3,

where a, b, c are nonzero whole numbers and p1, p2, p3 are distinct primes. It
will be transparent that the reasoning for this special case is perfectly general and
that, by limiting ourselves to three primes, we save ourselves from some horrendous
notation. If a, b, and c are all even, let a = 2α, b = 2β, and c = 2γ for some whole
numbers α, β, and γ. Then n = (pα1 pβ2pγ3)2, contradicting the hypothesis that n
is not a perfect square. Therefore at least one of a, b, and c is odd; let us say
a = 2k + 1 for some whole number k. Thus n = p2k+1

1 pb
2p

c
3.

Suppose there is some rational number r so that r2 = n. Let r = A
B , where A

and B are relatively prime whole numbers (see Theorem 3.1 on page 139). Then

A2

B2
= n = p2k+1

1 pb
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c
3,

which implies
A2 = p2k+1

1 (B2pb
2p

c
3).

Since p1 divides the right side, it divides the left side; i.e., p1 divides A2 and A con-
tains p1 in its prime decomposition. The number of p1’s in the prime decomposition
of A2 (the square of A) is therefore even. Denote the whole number (B2pb

2p
c
3) by C;

then the prime decomposition of C cannot contain p1 because p1 is not in the prime
decomposition of B (if it were, A and B would not be relatively prime). Conse-
quently, there is an odd number of p1’s on the right, namely, exactly 2k+1 of them.
This is a contradiction. Thus there can be no such r ∈ Q, and the proof is complete.

Pedagogical Comments. It does not seem likely, as of 2020, that a proof
of any of the following theorems will ever make its way into the K–12 classroom:
Theorem 3.1 (page 139) on the existence of a unique reduced form of a fraction,
Theorem 3.2 (page 140) on the Euclidean algorithm, Theorem 3.6 (page 149) on the
fundamental theorem of arithmetic, Theorem 3.8 (page 152) on the characterization
of fractions which are finite decimals, and finally, Theorem 3.9 (page 153) on square
roots that are not rational. This chapter therefore only serves the purpose of
enriching your mathematical culture but does not belong to your minimal survival
kit for teaching, or so it would seem.

The reality is a little different, however. Without having gone through these
proofs, can a teacher convey to students with conviction that division-with-remain-
der is not the mindless rote skill that TSM makes it out to be but is, rather, a
powerful mathematical tool that connects the reduced form of a fraction to the
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unique prime decomposition of a positive integer? Without having gone through
the proofs of Theorem 3.8 and Theorem 3.9 with care, can a teacher learn not to
spread TSM’s misinformation that it is the existence of the prime decomposition of
a positive integer that matters but that there is no need to discuss its uniqueness?
Without having gone through the proof of Theorem 3.1, won’t teachers continue
to insist that only fractions in lowest terms will be accepted as correct answers
because—as TSM would have it—getting to the reduced form of a fraction is so
easy? How can teachers avoid this pitfall if they have never faced a fraction such
as 899

1147 , or even just something as simple as 143
91 ?

A math teacher’s mathematical content knowledge therefore cannot be circum-
scribed, literally, by the topics in the school mathematics curriculum. At a time
when school mathematics education must rid itself of TSM, teachers also need to
know some of the mathematical ideas underlying the curriculum itself to better
understand why change is necessary. This chapter was designed to contribute to-
ward fulfilling this need. It is for this reason that we consider the proofs of these
theorems to be a vital part of the basic content knowledge of mathematics teachers.
End of Pedagogical Comments.

The infinity of primes

Finally, we reproduce Euclid’s proof of twenty-three centuries ago that there
are infinitely many primes. This is one of the most famous proofs in the history of
mathematics, due to its simplicity and its far-reaching implications.

The proof is by contradiction. Assuming that there are only a finite number
of primes, say p1, p1, . . . , pk, we will deduce a contradiction. Consider then the
whole number N = (p1p2 · · · pk) + 1. By the fundamental theorem of arithmetic,
this N has a prime decomposition. There are two possibilities: either N is itself a
prime or it is a product of two or more primes. The first possibility is impossible
because N is bigger than each of p1, . . . , pk and these pi’s are assumed to be the
only primes among whole numbers. Next, consider the second possibility that N
is a product of two or more primes. Then it has to be a product of two or more of
these p1, . . . , pk because they are assumed to be all the primes in existence. Let
us say N = p1p2p3, so, in particular, p1|N . But this too is impossible because,
since N = (p1p2 · · · pk) + 1 and also p1|(p1p2 · · · pk), the observation on page 141
implies that p1|1, a contradiction. We are therefore left with the conclusion that
the number of primes is infinite.

Of course everybody prefers a direct proof, so why not just exhibit an infinite
number of primes and be done with it? The sad fact is that people have tried, but
no one has succeeded in producing such a sequence thus far.

Exercises 3.2.

(1) Without using the fundamental theorem of arithmetic, give a direct, self-
contained proof of why the prime decomposition of 455 (= 5 × 7 × 13) is
unique.

(2) (i) Prove that two positive integers k and m are relatively prime if and
only if the prime decompositions of k and m have no primes in common.
(ii) Given two positive integers a and b, prove that if their GCD is k, then
the two positive integers a

k and b
k are relatively prime.


