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it is supposed to measure, why the definition—relying on the concept of triangle
similarity4—has to be so elaborate, and how the usual formula of "rise-over-run"
follows logically from the definition. It is a complex concept, and it deserves a
mathematical treatment that recognizes its complexity.5 Then we prove that a line
is horizontal if and only if it has 0 slope and that two lines passing through the same
point with the same slope must coincide. These theorems should begin to convince
students that the hard work of learning the definition is worth the effort. The precise
definition of slope enables us to dispel the mystery behind the interplay between
the geometry and the algebra of a linear equation in two variables. Indeed, it is
this mystery that has bedeviled students, teachers, and educators. The availability
of a precise definition of slope also enables us to prove that the graph of a linear
equation is a line and that each line is the graph of a linear equation (see Theorem
6.11 on page 354). We recommend, strenuously, that all students learn this proof,
because the reasoning imbedded in the proof renders all assessment items related
to equations of lines to be nothing more than routine exercises. It also goes without
saying that the discussion of systems of two linear equations in two variables gains
immeasurably in transparency as a consequence.

We hope that, building on such a correct mathematical foundation, education
research on student learning—or nonlearning—of slope will acquire greater validity.

This chapter makes a great effort to combat the negative impact on student
learning by both the abuse of the "concept of a variable" and the nondefinition of
slope in TSM. The extended pedagogical comments on pp. 318ff., 327ff., and 361ff.
will likely give you an even better idea about what goes into this chapter, and why.

6.1. Symbolic expressions

This section has the modest goal of introducing readers to the correct use of
symbols. Such a discussion would seem to have little mathematical substance, but
we will strenuously argue that it may very well be the most important section of
this chapter because it asks you to shed any bad habits you may have acquired in
your encounters with TSM concerning the use of symbols. You have been told that
mastering the concept of a "variable" is the gateway to algebra (cf. the pedagogical
comments in the subsection on pp. 318ff.). You were also told how to "manipulate
symbolic expressions" in a symbol x without giving any thought to what x may be
(cf. the Pedagogical Comments on page 327). These are not valid mathematical
practices, and the dual purpose of this section is to explain why not and, more
importantly, make suggestions on how to do better.

The basic etiquette in the use of symbols (p. 299)
Expressions and identities (p. 302)
An important identity (p. 306)
Mersenne primes (p. 307)
The finite geometric series (p. 309)
Polynomials and "order of operations" (p. 310)
Rational expressions (p. 316)
Pedagogical comments on the teaching of "variables" (p. 318)

4This is the reason we take up slope after Chapters 4 and 5.
5Rather than just heuristic argument after heuristic argument or lots of manipulatives and

storytelling without mathematical substance.
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The basic etiquette in the use of symbols

In mathematics, we use symbols to expedite the expression of ideas. The be-
ginning of algebra, as we understand this term, is the introduction of generality and
abstraction by using symbols6 to represent numbers. In order to convince students
with only a background in arithmetic that the use of symbols is something well
worth learning, we have to demonstrate the benefits of so doing.

Consider the problem of asking students to interpret a string of symbols, such
as y =

√
3x − 7. There are education researchers who believe that a problem of

this type can be used to assess mature ways of understanding mathematics and
mature ways of thinking about mathematics. This view is, however, erroneous. In
mathematics, such a string of symbols has no meaning , because they are the
exact analog of the question, "Is he someone with 225 pounds on a six-foot-five
frame?" Without knowing who "he" is, this statement may be true or it may be
false. By the same token, without knowing what y and x are in y =

√
3x − 7, there

is no interpretation to give and no conclusion to draw.
Let us do better. In mathematics, the correct use of symbols dictates that each

symbol must be quantified, i.e., clearly described as to what it stands for each
time it is used. This may be called the basic etiquette in the use of symbols.
For example, we can make sense of "y =

√
3x − 7" by specifying what x and y are

and by providing a context. Here are four variations on this theme:

For all real numbers x, we can find a real number y so that
y =

√
3x − 7.

For some real numbers x, we can find a real number y so that
y =

√
3x − 7.

There are an infinite number of fractions x and y so that y =√
3x − 7.

There are an infinite number of positive integers x and y so that
y =

√
3x − 7.

The importance of quantification can be seen by noting that, despite the similarity
between the first two statements, the first is false (e.g., x = 0) and the second is
true (e.g., x = 3 and y =

√
2). Similarly, despite the similarity between the last

two statements, the first is true whereas the second is false (see Exercise 1 on page
320).

A pertinent remark in this connection is that many school students7 commit
the elementary error of writing down symbolic expressions without quantifying the
symbols, such as "y =

√
3x − 7" above. Very likely, the only way to combat this

widespread abuse is to not allow TSM to take root in students’ thinking right from
the beginning. Let us teach them to always quantify their symbols.

6Usually using letters of the English alphabet, but often using letters from the Greek alphabet
as well because it is easy to run out of appropriate symbols for a particular task.

7And a good number of college students too.
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To make sure you see why it is important to always quantify your symbols,
we take up another example that has more mathematical substance. Consider the
following three statements:

(C1) n ≥ 3 and an + bn = cn.
(C2) For any positive integer n ≥ 3, there are no positive num-
bers a, b, and c so that an + bn = cn.
(C3) For any positive integer n ≥ 3, there are no positive integers
a, b, and c so that an + bn = cn.

The statement (C1) has no meaning , because we do not know what the sym-
bols a, b, c, and n stand for. If a and b in (C1) are 2 × 2 matrices and c is a
3 × 3 matrix, then (C1) is false, but of course (C1) is true if n = 3 and a = 1,
b = 2, c = 3

√
9 (the cube root of 9). (C2) is totally false because no matter what

n may be and no matter what the positive numbers a and b may be, letting c be
the positive n-th root of an + bn (see Theorem 4.2 in Section 4.2 of [Wu2020b])
will always yield the desired equality of numbers, an + bn = cn. Finally, one may
recognize statement (C3) as the famous Fermat’s Last Theorem, first conjectured
by Pierre Fermat in 1637 but not proved until Andrew Wiles did so in 1995 (see
[WikiFermat]; we will have more to say about Fermat on page 308). Not to harp
on the obvious, but the statements (C2) and (C3) differ by just one word in the
quantifications of a, b, and c. Moral: Precise quantification of symbols is important.

Once the need for quantification of symbols is understood, we now clarify the
use of the word "variable". First we give an example. Consider the problem of
finding all the numbers x which satisfy 3x + 7 = 5. In the usual jargon, this is
known as solving the linear equation 3x + 7 = 5. We will take a serious look
at "what an equation means and how to solve an equation" in Section 6.2 on pp.
322ff., but we will proceed informally at this juncture to get our point across. With
this understood, the usual procedure for solving such equations yields 3x = 5 − 7,
and therefore

x =
5 − 7

3
.

There is a reason why we do not carry out the computation in the numerator to
write the solution as −2

3 , and it is because if we consider 3x + 1
2 = 13 instead, then

we get

x =
13 − 1

2

3
.

Or, consider 3x − 25 = 4.6 and by rewriting it as 3x + (−25) = 4.6, we get

x =
4.6 − (−25)

3
.

Or, consider 5x − 25 = 4.6 and get

x =
4.6 − (−25)

5
,

and so on. There is an unmistakable abstract pattern here: one can easily verify
that, with a, b, and c (a %= 0) understood to be three fixed numbers throughout the
following discussion, the solution of the linear equation ax + b = c is

x =
c − b

a
.



6.1. SYMBOLIC EXPRESSIONS 301

We have now witnessed the fact that in some symbolic expressions, the symbols
stand for elements in an infinite set of numbers,8 e.g., the statement that mn = nm
for all real numbers m and n, while in others, the symbols stand for the element
in a set consisting of exactly one element (in other words, they stand for a fixed
value throughout the discussion), e.g., the numbers a, b, and c in the preceding
linear equation ax + b = c. In the former case, the symbols m and n are called
variables, and in the latter case, a, b, and c are called constants. Notice that
such terminology is no more than an afterthought when we have carefully quantified
the symbols in each situation. There is in fact no need for the words variables
and constants when such information is already contained in the quantification.
However, we will continue to use them not only because they have been in use
for over three centuries and are everywhere in the mathematics literature, but also
because they are at times an indispensable shorthand.

There are compelling reasons for singling out the terminology of "variable" and
"constant" for such an extended discussion. See the pedagogical comments on pp.
318ff. and 327ff., respectively.

In a situation where we try to locate any numbers x that satisfies a given equa-
tion (such as 2x2 + x − 6 = 0 or 2x = x), the value of the number x is unknown
to us, of course. For this reason, we will conveniently refer to the symbol x as an
unknown, just to save verbiage. To the extent that we will never make logical
deductions based on the properties of an "unknown", it is not necessary to make
this terminology more precise.9

At the risk of pointing out the obvious, note that we have been making use of
symbols from the very beginning of this volume out of necessity. One example is the
addition formula for fractions (equation (1.12) on page 33): for any two fractions
k
! and m

n , where k, !, m, n are whole numbers (the product !n %= 0),

k

!
+

m

n
=

kn + !m

!n
.

If we do not use symbols, we would be forced to express the formula as follows:
The sum of two fractions is the fraction whose numerator is
the sum of the product of the numerator of the first fraction
with the denominator of the second, and the product of the
numerator of the second with the denominator of the first, and
whose denominator is the product of the denominators of the
given fractions.10

Even if you are inordinately fond of the English language, you will have to admit
that the symbolic statement is far more clear, and this is not even taking into
account the difficulty of trying to provide a mathematical derivation of this addition
formula without the benefit of symbols.

8Strictly speaking, all that matters is that the symbols stand for elements in a set consisting
of more than one element. But for school algebra, "infinite" suffices for the purpose at hand.

9This saves us from the need to discuss the relationship between an unknown and a variable.
10This was the way mankind had to express formulas from al-Khwarizmi (c. 780 to c. 850)—

the person whose name gave birth to the word "algorithm"—all through the Middle Ages to
the time of François Viète (1540–1603). The codification of the symbolic notation is generally
attributed to R. Descartes (1596–1650). See [Bashmakova-Smirnova].
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This example may serve the purpose of explaining to students why the use of
symbols is a necessity. Of course, there are innumerable other examples as well.

Expressions and identities

We now begin the mathematical discussion.
By a number expression, or more simply an expression, in a given collection

of numbers x, y, . . . , w, we mean a number obtained from these x, y, . . . , w and
from a collection of specific real numbers by the use of a combination of the four
arithmetic operations (i.e., +, −, ×, ÷). For example, if x, y, z are numbers, then

xy

xyz − 7
+ x3(16z − y2) −

4

13
z21

is an example of a number expression in the numbers x, y, z (we have to assume
xyz %= 7). More precisely, it is the number obtained by applying +, −, ×, and ÷
to the numbers x, y, z and to the specific numbers 7, 16, and 4

13 .
We note explicitly that since the definition of an expression requires that we

compute with numbers x, y, etc., that may not be rational, FASM (page 133) has
been implicitly invoked for this definition to make sense.

The meaning of number expression will be enlarged, in due course, to include
the use of specific functions of the numbers x, y, . . . , w (see the end of Section 1.1
in [Wu2020b]) and the use of the operation of "taking the n-th root" (see Section
4.2 of [Wu2020b]). Because all the symbols we use are numbers, we can apply all
we know about numbers (including FASM) to number expressions without having
to learn anything new, including the fact that the associative, commutative, and
distributive laws are automatically valid for computations with number expressions.
The importance of the latter fact for teaching and learning cannot be overstated,
because in TSM, a "variable" is considered to be a different animal from a number
and therefore the arithmetic operations on expressions (involving "variables") can
only be justified by an arbitrary decree—a prime example of teaching by rote.

In a number expression such as

x4 − 5x3y2 +
1

2
x2y2 − xy3 + 2y4 +

x

1 + y2
,

which involves the numbers x and y, we may regard it as nothing more than a sum
of products, namely,

(x4) + (−5x3y2) +
1

2
(x2y2) + (−xy3) + (2y4) + (x · (1 + y2)−1).

(You may wish to review at this point the definition of subtraction in terms of
addition on page 96 and the interpretation of division as multiplication by a multi-
plicative inverse in equation (2.29) on page 115). Any of the expressions x4, −5x3y2,
1
2x2y2, −xy3, 2y4, and x

1+y2 , which are separated by two consecutive +’s (except
for the first one x4 and the last one x

1+y2 ), is called a term of the expression. As
is the custom, the writing of the expression x4 − 5x3y2 + 1

2x2y2 − xy3 + 2y4 + x
1+y2

has made implicit use of three notational conventions :
Retiring the multiplication symbol ×: The multiplication
sign × is omitted in expressions except that if emphasis on
a particular multiplication is needed, a dot "·" is used, as in


