| A thermometer is taken from a room where the temperature is $25^{o}C$ to the outdoors, where the temperature is $-6^{o}C$ . After |
|-----------------------------------------------------------------------------------------------------------------------------------|
| one minute the thermometer reads $11^{\circ}C$ .                                                                                  |
| (a) What will the reading on the thermometer be after $4$ more minutes?                                                           |
|                                                                                                                                   |
| (b) When will the thermometer read $-5^{o}C$ ?                                                                                    |
| minutes after it was taken to the outdoors.                                                                                       |
| Solution:                                                                                                                         |

Find 
$$T(t) = \frac{1}{2}$$

Newton's Law of Cooling

 $T' = -H(T - T_m)$ 
 $T_m = -6$ 

what is  $25^{\circ}C$ ? initial temporature  $T = 25^{\circ}C$ 

when  $t = 1$  min, temporature  $T = 11$ 
 $T(0) = 11$ 
 $T' = -H(T - (-6))$ 
 $T' = -HT - 6H$ 
 $15^{\circ}C$  order liker.

STEP | Sinde solution  $T_1$  to complementary:

 $T' + HT = 0$ 
 $T' = -HT$ 
 $T' = -$ 

pn/Tl - ht

STEP2 gress 
$$T = u \cdot T$$
,

 $T = e^{nt}$ 
 $T = ue^{nt}$ 
 $T = ue^{nt}$ 
 $T = -6nt$ 
 $T = -6nt$ 

$$25 = -6 + Ce$$

$$\frac{17 = 31e^{-4}}{31}$$

$$K = -\ln\left(\frac{17}{3/2}\right)$$

temperature of thermometer

ninute the thermometer reads IT U.

(a) What will the reading on the thermometer be after 4 more minutes?

(b) When will the thermometer read  $-5^{\circ}C$ ?

minutes after it was taken to the outdoors.

Solution:

a) find T when 
$$t = 5^{\text{nin}} \left( \frac{1}{4^{\text{nin}}} + \frac{1}{4^{\text{nove}}} \right)$$

$$T = -6 + 31 e^{-60677} \left( \frac{1}{5} + \frac{1}{6} + \frac{1$$

T≈-4.46253°C

$$\frac{1}{31} = e^{-.60077}$$

$$\frac{1}{31} = -.600774$$

$$\frac{(n(\frac{1}{31}))}{-.60677} = t$$

$$\frac{t = 5.71598 \text{ minutes}}{1.598 \text{ minutes}}$$

A species of rabbits has a growth rate of 0.625 / month. If a population of foxes inhabits the same forest and kills 25 rabbits per day, find the general solution describing the population of rabbits.

P(t)= Assume that one month = 30 days.

Hint:

Preview My Answers

**Submit Answers** 

Show correct answers

P= population t=tikin months

