Exact Equations
Today: two types of differentiation

$$
\frac{\text { Implicit Differentiation }}{y \text { is a function of } x}
$$

Partial Differentiation
treat $y$ as constant when differentiating with respect to $x$.

Example 1: Given the differcatial equation $6 x^{5}+2 x y^{2}+\left(2 y x^{2}+5 y^{4}\right) \frac{d y}{d x}=0$,
verify that this equation $x^{6}+x^{2} y^{3}+y^{5}=c$
is an implicit solution.
To check, tate derivative of the equation $\binom{$ Sob. it. }{ Dit. }

$$
\begin{gathered}
\frac{d}{d x}\left(x^{6}+x^{2} y^{3}+y^{5}\right)=\frac{d}{d x} \cdot c \\
6 x^{5}+2 x y^{2}+x^{2} \cdot 2 y \cdot y^{\prime}+5 y^{4} \cdot y^{\prime}=0 \\
6 x^{5}+2 x y^{2}+\left(x^{2} \cdot 2 y+5 y^{4}\right) \cdot y^{\prime}=0 \\
6 x^{5}+2 x y^{2}+\left(2 y x^{2}+5 y^{4}\right) \cdot \frac{d y}{d x}=0
\end{gathered}
$$

Yes, if is a solution.
$\frac{\text { Partial Differentiation }}{\text { written } \frac{\partial^{K}}{\partial x}}$
Treat all other variables as constant.
Ex find ${ }^{a} \frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ of
a) $\frac{\partial}{\partial x}\left(x^{6}+x^{2} y^{2}+y^{5}\right)=6 x^{5}+2 x y^{2}+0=\frac{6 x^{5}+2 x y^{2}}{5 x^{2}}$
b) $\begin{aligned} & \frac{\partial}{\partial y}\left(x^{6}+x^{2} y^{2}+y^{5}\right)=0+2 x^{2} y+5 y^{4} \\ &=2 x^{2} y+5 y^{4} \\ & \text { Diff } \quad M(x, y)\end{aligned}$

$$
\frac{d}{d x} 5 x^{2}=10
$$

Original ${ }^{1} E_{q:} \quad \sqrt{6 x^{5}+2 x y^{2}}+\left(2 y x^{2}+5 y^{y}\right) \frac{d y}{d x}=0$,

Defn If a differential equation of the form $M(x, y)+N(x, y) \frac{d y}{d x}=0$ is exact, then there is a function $F(x, y)$

$$
\text { with a) } \frac{\partial}{\partial x} F=F_{x}=M(x, y)
$$

b) $\frac{\partial}{\partial y} F=F_{y}=N(x, y)$
c) $F(x, y)=C$ is the (implicit) gereval solution to the equation.
Goal: Given $M(x, y)+N(x, y) \frac{d y}{d x}=0$, find $F(x, y)$. How do $u$ tell if its exert?

$(x, y)=y \cos x+2 x e^{3}$
STEPI Does $M_{y}=N_{x}$ ?

$$
\begin{aligned}
& \frac{\partial}{\partial y} M=\frac{\partial}{\partial y}\left(y \cos x+\partial x e^{y}\right)=1 \cdot \cos x+2 x e^{y}=M_{y} \\
& \frac{\partial}{\partial x} N=\frac{\partial}{\partial x}\left(\sin x+x^{2} e^{y}-1\right)=\cos x+\partial x e^{y}+0=N_{x}
\end{aligned}
$$

check $M_{y}=N_{x}$ so the equation is exact.
STEP I Integrate $M$ with respect to $x$ :

$$
\int_{\text {treat } y \text { as constant: }}^{y \cos x+2 x e^{y} d x}
$$

$$
F(x, y)=y \sin x+x^{2} e^{y}+\phi(y)
$$

solefuration of y (unction)
STEP 3 find $\frac{\partial}{\partial y} F(x, y)$, set equal to $N(x, y)$

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(y \sin x+x^{3} e^{y}+\phi(y)\right)=\sin x+x^{2} e^{y}+\phi^{\prime}(y)=F_{y} \\
& \text { set } F_{y}=N \\
& \sin x+x^{2} e^{y}+\phi^{\prime}(y)=\sin x+x^{2} e^{y}-1 \\
& -\sin x-x^{2} e^{y} \quad \\
& \quad-\sin x-x^{2} e^{y}
\end{aligned}
$$

STEP:

$$
\begin{aligned}
& \int \phi^{\prime}(y) d \sqrt{5}-1 d y \\
& \phi(y)=-1 \cdot y=-y
\end{aligned}
$$

STEPS: $F(x, y)=y \sin x+x^{2} e^{y}-y$
solution to our jiffy $Q$ is:

$$
\frac{F(x, y)=c}{y \sin x+x^{2} e^{y}-y=c}
$$

