Review of set notation

$$
\begin{aligned}
& A \cup B=\{x: x \in A \vee x \in B\} \\
& A \wedge B=\{x: x \in A \wedge x \in B\} \\
& A-B=\{x: x \in A \wedge x \notin B\} \\
& A \times B=\{(x, y): x \in A, y \in B\} \\
& \bar{A}=A^{C}=U-A=\{x: x \notin A\} \\
& P(A)=\{x: x \subseteq A\}
\end{aligned}
$$

$A \leqslant B$ mans for all $x \in A$,
$O R$
if $x \in A$ then $x \in B$

Today How to prove:

1. $a \in A$
2. $A \notin B$
3. $A \subseteq B$
4. $A=B$

How to prove $a \in A$:
In general, this involves stowing a satisfies the definition of the set A.

Ex; if $a=\{2,12,17\}$, and $A=\{x \in P(X):|x|=3\}$ prove that $a \in A$

Drove: First, rote that 2,12 and 17 are in \mathbb{N}. Thus $a \subseteq \mathbb{N}$, and so $a \in \mathbb{P}(\mathbb{N})$.
also $|a|=3$,
Thus $a \in A_{\square}$
Ex: if $C=\left\{3 x^{3}+2: x \in \mathbb{Z}\right\}$, then prove $-22 \in C$.
Proof First, consider $x=-2 \in \mathbb{Z}$.
also $3(-2)^{3}+2=-22$.
Thus $-22 \in C_{\square}$

$$
\begin{aligned}
& x=2 \\
& 3 \cdot 2^{3}+2=\sqrt{26 \in C} \\
& x=2 \in \mathbb{R} \\
& 3 \cdot 2^{3}+2=26 \\
& \begin{array}{l}
x=-2 \in \mathbb{R} \\
3(-2)^{3}+2 \\
-24+2=-22 \in C \\
\uparrow \\
\text { this is scratch } \\
\text { wrk-does rot } \\
\text { reed to be induced } \\
\text { in your proof }
\end{array}
\end{aligned}
$$

How to prove $A \nsubseteq B$ Give ore example of $x \in A$ with $\times \notin B$.

$$
\begin{gathered}
A=\{a, b, d, e\} \\
B=\{a, b, c, d\} \\
I s A \subseteq B ? X_{0}- \\
\text { because } e \in A \text { bot } \\
e \notin B .
\end{gathered}
$$

How to prove $A \subseteq B$
Prof(diect): Suppose $x \in A$

Thus $x \in B$
Proof(Contriperitiu): Suppose $x \notin B$

$$
\text { Thus } x \notin A_{\square}
$$

Prove "if $x \in A$ then $x \in B$ " conditions: $P \rightarrow \bar{Q}$
conturasitic: $\sim Q \rightarrow \sim P$

$$
" \text { suppose } x \in A \wedge \quad x \notin B "
$$

Ex Prove that $\{x \in \mathbb{Z}: 18 \mid x\} \subseteq\{x \in \mathbb{Z}: 6 \mid x\}$ Proof $\int^{\left(\nabla_{0} x^{c^{*}}\right)}$ Suppose $a \in\{x \in \mathbb{Z}: 18 \mid x\}$.

Then $a \in \mathbb{R}$ and $18 / a$, by the definition o the ext.
then $a=18 y$ forson $y \in \mathbb{\mathbb { 1 }}$, by definition of divides.

$$
a=6 \cdot(3 y)
$$

Note $3 y \in \mathbb{Z}$ by closure $f \mathbb{Z}$ under multiplication.
Thus GPa, by definition of divides.
Thus $a \in t$ and G la,
Thus $a \in\{x \in \mathbb{Z}: 6 \mid \times\}$

Ex if A, B are sets, prove $P(A) \cup P(B) \subseteq P(A \cup B)$
Proof (Direct) Suppose $d \in P(A) \cup P(B)$
Then either $d \in P(A)$ or $d \in P(B)$
basel: Suppose $d \in \mathbb{P}(A)$.
thus $d \subseteq A$
Then $d \leq A \cup B$
Thus $d \in P(A \cup B)$
cased: suppose $d \in P(B)$
This $d \leq B$
and so $d \leq B \cup A$
so $d \in P(B \cup A)_{\square}$

How to prove $A=B$
Proof
[1. prove $A S B]$
$[2$. prove $B \subseteq A]$

Thus, since $A \subseteq B$ ard $B \subseteq A$, we have $A=B_{B}$
prop Given sets A, B and C,
prove $A \times(B \cap C)=(A \times B) \cap(A \times C)$
Proof $\left(A_{x}(B, C) \leq\left(A_{*} B\right) \cup\left(A_{*} C\right)\right.$
) ${ }^{2}(p, a) A \times(B \cap C)$ then $p \in A$ and $q \in B \wedge C$, by definition of product
also $q \in B$ and $q \in C$, by definition of intersection.
Since $p \in A$ and $q \in B$, re to k

$$
(p, q) \in A^{L} \times B
$$

also since $p \in A$ and $q \in C$, we tore $(p, q) \in A \times C$

$$
\text { so }(p, q) \in A \times B \text { and }(p, q) \in A \times C
$$

$\operatorname{Thus}(p, q) \in(A \times B) \wedge(A \times C)$ by
definition of intersection o
(3) Conversely, Suppose

$$
(p, q) \in(A \times B)^{\prime} \cap(A \times C)
$$

Thus $(p, q) \in A \times(B \cap C)$

