Defn: a natural numbernis prime if if has exortly two positive divisors, 1 and n. a natural number is composite if if is of prime.
Fort: a natural number $n>1$ is composite if and only if 重 $n=a b$, for $a, b \in \mathbb{N}$, $a<n$ and $b<n$.
Coal: NT3.2 (Euclid Theorem)
Goal: Theorem there are infinitely many primes.

Theorem NT 3.1 Every natural number $n>1$ is either prime or divisible by a prime.
Proof (contradiction). Suppose there exist natural numbers >1 that are not prime and are not divisible by a prime. Let S be the set of these numbers.
let n be the smallest element of S. n is not prime and ais not dinsibe by a prime, by definition of S.
Since n is not prime, n is composite(br y $^{\text {y }}$ definition of composite).
So $n=a b, a, b \in N$, with $a<n$ and $b<n, b y$
the fort stated above.
Note that afn, by the definition of divides. consider the number a. There are two cores:
Casel: a is prime.
then n is divisible by aprine, which is a contradiction.
Case 2: a is not a prime,

Question: $\overrightarrow{\text { is it }}$ possible that a is in the set 57
thees a is composite, by deft of composite. Note a cannot be a venter of S, since $a<n$ and a is He smallest menberof S.
since $a \notin S$, either a is prime or a is divisible by a prime. Thus a is divisible by a prinep.
so pla, p is prime.
so $a=p x, x \in \mathbb{Z}$, by definition of divides.
since $n=a b$

$$
\begin{aligned}
& n=(p x) b \\
& n=p(x b)
\end{aligned}
$$

note $x b \in \mathbb{Z}$ sing $x \in \mathbb{Z}, b \in \mathbb{N}$ and \mathbb{Z} closed under multiplication Thus p ln by definition at divides, so n is divisible by a prime, contradiction

Theorem there are infinitely many primes.

Proof (contradiction): Suppose there are only Finitely many prime. lets call them $P_{1}, N_{2}, P_{3}, \ldots, P_{n}$
Good: slouthere must be a prime not on this] list
Consider the number

$$
H=P_{1} P_{i} \cdot P_{i} P_{4} \cdot \cdots \cdot P_{n}+1
$$

for any P_{i}, note that $P_{i} \nmid K$ (it Las a remainder of 1) But, by theorem NT 3.1, k is either prime itself, or is divisible by a prime.

In either case, there is a prime not in the list $p_{1}, p_{2} \ldots, p_{n}$. contradiction

