Defn: a natural number nis prime if it
hos exortly two positive divisors, I and n.
a natural number is composite if it is not prime.
Fact: a natural number n>1 is corposite if and
only if
$$z = n = ab$$
, for a, bEN, ach and
bEN.
MT3.2 (Euclids Theorem)
Goal: Theorem flere are infinitely many primes.

the Feet stated above.
Note that alm, by the definition of divides.
Consider the number a. There are two coses:
Casel: a is prime.
Hen in is divisible by aprime,
which is a controdiction
Cased: a is not a prime,
thus a is composite, by defined composite.
Note a cannot be a number of S, sime
a ch and a is the smallest unberd S.
Since aff S, either a is prime or
a is divisible by a prime. Thus
a is divisible by a prime.
So pla, p is prime.
So
$$a = px, x \in \mathbb{Z}$$
, by definition of
 $birides$.
Since $n = ab$
 $n = p(xb)$
note $x b \in \mathbb{Z}$ sime $x \in \mathbb{Z}$, betw
and \mathbb{Z} closed under multiplate
thus plan by definition of
divides, so is divisible
by a prime, controdiction T

Question: issit possible that a is in the set 57

Hearen Here are infinitely many prives. Proof (contruon... only Finitely nany prines. lets call flen Pi, No, Ps, ..., Sh Good: shortlere must be a prine not on this list Proof (contrudiction): Suppose Here are Consider the number $H = P_i P_i P_i P_j \cdots P_n + 1$ For any Pi, note that PiKK (it has a remainder of) But, by theorem NT3.1, K is eitler prine itself, or is divisible by a prime.

In eitler core, there is a prine not in the list P., Mar., Mr. Contradiction 7