Euclid's Lemma: Suppose $a, b \in \mathbb{Z}$ and p isprine. if plat then play or pl.

If a number divides a product, must it divide one of the factors?
$3 \mid 18$
$18=6.3 \quad 316 \mathrm{~cm} / 3 \mathrm{~s}$
$18=2.9 \quad 319$
$\begin{array}{ll}18=1.1 / 8 & 3118 \\ 24\end{array}$
$24=2.12 \quad 6 / 12$
$24=3.8 \quad 6 x_{3}, 48$!
9190
$90=9 \cdot 10 \quad 9 / 9$
$90=45.2 \quad$ a/4s
$90=6.15$
$90=3.30$

If and only if - biconditionals
$P \longleftrightarrow Q$ " P if and only if Q "
means: $(P \rightarrow Q) \wedge(Q \rightarrow P)$
Outline - proofs of if and only'f statements Prop. $P \longleftrightarrow Q$
Proof.
(First, prove $P \rightarrow Q$, using direct, contrapositive, or contradiction)

Convenerely,
(Then pare $Q \rightarrow P$, wing direct, contrapositive, or contradiction)
given $P \rightarrow Q$, re call $Q \rightarrow P+$ le converse of the original.
Use "conversely" to intudione the second part.

Ex
Prop an integer n is even if and only if n^{2} is even.

Proof (formals direction) (Direct): Suppose $n \in \mathbb{Z}$ is even.
then $n=2 b, b \in \mathbb{Z}$, by definition feven. So

$$
n^{2}=(2 b)^{2}=4 \cdot b^{2}=2\left(2 b^{2}\right)
$$

Note $26^{2} \in \mathbb{Z}$ by closure $f \mathbb{Z}$ under.
Thus n^{2} is even, by the definition of even.
$\xrightarrow{\longrightarrow}$.iseven Conversely, Suppose $n \in \mathbb{Z}$ is odd.

$$
\begin{aligned}
& \text { then ris then } n=2 c+1, c \in \mathbb{Z} \text { by defintion food } \\
& \text { lets use } \\
& n^{2}=(2 c+1)^{2}=(2 c+1)(2 c+1) \\
& =4 c^{2}+2 c+2 c+1 \\
& n^{2}=4 c^{2}+4 c+1 \\
& n^{2}=2\left(2 c^{2}+2 c\right)+1 \\
& \text { Then } 2 c^{2}{ }^{2} 2 c \in \mathbb{Z} \text { by closue } f \mathbb{Z} \\
& \text { Thens in miltiol:cation and ood dition. } \\
& \text { Thes } n^{2} \text { is ood, by at te dofivition }
\end{aligned}
$$

Thus ~A.
Existence proofs

$$
\text { Prop } \exists x P(x)
$$

Proof: (gine an exampl of such an x, show it satisties $P(x)$

Prop. There exits an even price number.
Proof. Consider the runberd. If is even, and it is a loo prime.

Prop There exists a natural number ar such that $n^{2}-2=7$.
Proof, Suppose $n=3$. Then $n \in \mathbb{N}$, and $n^{2}-2=3^{2}-2=9-2=7$.

Prop there is an integerthat can be expressed as the sum of two cubes in two differ ways.
Proof Comines the number 1729 . Notice $1729 \in \mathbb{Z}$. Note that $1^{3}+12^{3}=1729$ and $9^{3}+10^{3}=1729$.
$3^{3}+1^{3}=$
$27+1=28$
$28 \in \mathbb{Z}$
$28=3^{3}+1^{3}$
$x=\square$
$35=3^{3}+2^{3}$
1729
$R^{2}+1 D^{2}==179$
$9^{3}+10^{3}$
d \downarrow
$729+1000=1729$

Prop Suppose $a \in \mathbb{Z}$. Then 6) a if ardonly't $2 \mid a$ ard $31 a$.

$$
\text { Proof }(\rightarrow) \text { supper } \in \mathbb{Z}
$$

and $6 / a$,
So $a=6 b, b \in \mathbb{Z}$ by den of divides.

$$
a=2 \cdot 3 \cdot b
$$

$a=2(3 b)$
N_{0} te $36 \in \mathbb{Z}$ by closure of \mathbb{Z} under multiplication
so ala by defray divinise
also $a=3(2 b)$
and $2 b \in \mathbb{Z}$ by dove of Tuber rultigliation.
thus 3 la by definition of
This $21 a$ and 31 divides.
Conversely, (direct prow) suppose $a \in \mathbb{Z}$ and $2 l a$ and $3 \mid a$. Then $a=2 x$ forson $x \in \mathbb{T}$ and

noted Since $3 / a$ and $a=2 x$, we have $3 / 2 x$.

Euclids Lenin tells us flat either $3 / 2$ or $31 x$
Since 3×2, re must hove $31 x$.
So $x=3 \cdot c, c \in \mathbb{Z}$ by definition of divides

$$
\begin{aligned}
& a=2 x=2 \cdot 3 \cdot c \\
& a=6 \cdot c, \quad c \in \mathbb{Z} .
\end{aligned}
$$

thus 6/a, by lefinitonf divides

