Homework
Prop: if $a, b \in \mathbb{Z}$, and and bare not both zero, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+3 b, b)$
Recall: the $\operatorname{ged}(a, b)$ is the integer d such that
(1) d is a common divisor, that is, dea and dib
(2) if cha and $d b, d \geqslant c$

$$
\begin{aligned}
& a=6 \quad b=9 \\
& \operatorname{gcd}(6,9)=3 \\
& a+3 b=6+3 \cdot 9=33 \\
& \operatorname{gcd}(a+36,6) \\
& =\operatorname{gcd}(33,9)=3
\end{aligned}
$$

If you want to prove d is
the ged of a, b, justsom:
\rightarrow (1) shod a an d ${ }^{\text {did }}$
\longrightarrow Sb if c la and d b then $d \geqslant c$.
Proof Suppose $a b \in \mathbb{Z}$ and a, b on thoth
zero. Let $d=\operatorname{gcd}(a, b)$.
Then d / a and $d / b, b y$ definition of ged.
Notice $a=d x$ and $b=d y$ for some $\in \mathbb{Z}$, by definition af divides.
So $a+3 b=d x+3(d y)$
note $x+3_{y} \in \mathbb{Z}$ by close $f \mathbb{Z}$ under t. so $d / a+3 b$, by definition of divides. Since d lb was given, we hove tat d is a common divisor of $a+3 b, b$
Now suppose c is a common diniou of $a+3 b, b$.
so $c \mid a+3 b$ and $c \mid b$.
so $a+3 b=C p, p \in \mathbb{Z}$ and $b=c q, \quad q \in \mathbb{Z}$.
by the definition of divides.
Consider $a=a+3 b-3 b$

$$
\begin{aligned}
& a=c p-3(c q) \\
& a=c(p-3 q)
\end{aligned}
$$

Note $p-3 q \in \mathbb{Z}$ bydesme $\delta \mathbb{Z}$ under t.
Thus $c l a$, by definition of divides. Since c is a common divisor of a ard and d is the greatest common divisor of a and 6 , it follows that $d \geqslant c$.
Therefore $d=\operatorname{gcd}(a+3 b, b)$ boas the . dgcd.
Useful fort you con use in proofs:
NT2.1 Suppose $a, b \in \mathbb{Z}$ not both zero.
then there exist $x, y \in \mathbb{Z}$ such f at

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=a x+b y \\
& \text { "gcd(a,b)is a linear combination of } a \text { and } b "
\end{aligned}
$$

Proof by contradiction
Prop If $a, b \in \mathbb{Z}$ then $a^{2}-4 b \neq 2$. what if the proposition was False? ila would go wrong?
Proof Suppose $a, b \in \mathbb{Z}$ and $a^{2}-4 b=2$.
then $a^{2}=2+4 b$

$$
a^{2}=2(1+2 b)
$$

let $c=1+2 b$
rote $\overline{C E T \text { bye os on }}$ of \mathbb{Z} under t, \cdot.
the $a^{2}=2 c$ is even, by definition of even.

Thus since a^{j} is even, a must be even (proved inclasslonemt) So $a=2 d, d \in \mathbb{Z}$, by der no of
substituting, we find ever.

$$
\begin{aligned}
& (2 d)^{2}-4 b=2 \\
& 4 d^{2}-4 b=2
\end{aligned}
$$

divide by 2 :

$$
\begin{aligned}
& 2 d^{2}-2 b=1 \\
& 2\left(d^{2}-b\right)=1
\end{aligned}
$$

Note $d^{2}-b \in \mathbb{Z}$ because \mathbb{Z}

Thus $T_{i s}^{c}$ ever by definition of even.

But re know lis not even.
Contradiction!
Thus if $a, b \in \mathbb{Z}$ flea $a^{2}-4 b \neq 0$.

Overall, we did the following:

Proposition: P
Proof (contradiction). Suppose rp

Thus $C \wedge \sim C$
contradiction.
Therefore P_{I}
Prop. $\sqrt{2}$ is irrational.
Proof(controdiction) Suppose
$\sqrt{2}$ is rational.
Thus $\sqrt{2}=\frac{p}{q}, p, q \in \mathbb{Z}_{\text {and }}$ $q \neq 0$, by the defintionot rational number. Wittant
lors at geverality, $\frac{1}{a}$ lowst terns (p, q tave no
common firtors
besides 1) reerta
conturition

$$
\begin{gathered}
(\sqrt{2})^{2}=\left(\frac{p}{q}\right)^{2} \\
2=\frac{p^{2}}{q^{2}} \\
2 q^{2}=p^{2}
\end{gathered}
$$

Note $q^{2} \in \mathbb{Z}$ by clesure of \mathbb{Z} undernutiopication.

Thus p^{2} is seren, ly deficition af even
Thas p is even (prodims coss)
So $p=2 x, x \in \mathbb{Z}$, by
detinition aferen.
substitute to get

$$
\begin{aligned}
& 2 q^{2}=(2 x)^{2} \\
& \frac{2 q^{2}}{2}=\frac{4 x^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& q^{2}=2 x^{2} \\
& x^{2} \in \mathbb{Z} \text { byclosure of }
\end{aligned}
$$ \mathbb{Z} under multiplication So q^{2} is even by definition of even.

Thus since p, q are both even they are both divisible by 2.
Thus p, q lave a
commortaztor of 2 . Contradiction (we said p, q Lad no connou factors).
Thus $\sqrt{2}$ is irrational.

