3.

a. You have three vampire books, four steampunk novels, and five post-apocalyptic teen romances. How many ways are there of arranging them on a shelf if books of the same type must be kept together?
b. How many 5 element subsets are there from a set with 8 elements?
c. Find $\mid\{X \in P(A): A=\{0,1,2,3,4,5,6\}$ and $|X|=3\} \mid$
d. After expanding $(a+b)^{5}$, what is the coefficient of the term $a^{3} b^{2}$?
e. In a class consisting of 12 men and 15 women, how many different ways are there of choosing a group consisting of 3 men and 6 women?
f. What formula do we use to determine the number of subsets of size k of a set of size n ? Write the formula, and describe what the different parts of the formula mean (where does the formula come from?).

$$
=\frac{n!}{(n-k)!K!}
$$

$$
3 b) n=8, H=5
$$

$$
{ }_{8} C_{5}=\frac{8!}{(8-5)!5!}=
$$

Bc) $n=7, r=3$

$$
{ }_{7} C_{3}=\frac{7!}{(2-3) \cdot 3!}=
$$

$$
\begin{aligned}
& \text { 3-2.1 stecopount } \\
& 3!=6 \quad 4 \quad \frac{3}{4!}=\frac{2}{24} \\
& 5!=120 \\
& \begin{array}{l}
\text { A } B C C \\
3!\frac{2}{3} \frac{1}{6} \text { weys of armait } \\
\text { the genve's on thelf. } \\
\text { shelf. }
\end{array}
\end{aligned}
$$

totel: $6 \cdot 6.24 \cdot 120=$ \qquad
5. Proposition. For $x, y \in \mathbb{Z}$, if $x+y$ is even, then x and y have the same parity.
convitional two options:

Prof $f($ Diet $)$. Suppose $x, y \in \mathbb{Z}$ and
Suppose $x+y$ is even.
The $x+y=2 a, a \in \mathbb{Z}, b y$ definition
of even
either Kandy are both odd or x and y are both even Therefore, x and y have the same parity.

Proof(contamarition) Suppose $x, y \in \mathbb{Z}$ and x andy do not hove the same parity.
cased x is even only is ode.

$$
\text { Thin } x=2 a, a \in \mathbb{Z} \text { and } y=2 b+1, b \in \mathbb{Z}
$$

by definition of even, odd.

$$
\begin{aligned}
x+y & =2 a+2 b+1 \quad \text { byrabittion } \\
& =2(a+b)+1
\end{aligned}
$$

let $\begin{aligned} & n=a+b \text {, then } n \in \mathbb{Z} \text { sine } \\ & \mathbb{Z} \text { is cideduacer odditim. }\end{aligned}$
so

$$
x+y=2 n+1, n \in \mathbb{Z}
$$

Therefore $x+y$ sod $l y$ diff of odd.
thenfor $x+y$ is not even.
困Q
rose 2: y is even od x is old.
exarfly flu say proof but with x and y
switced.
\rightarrow irstead at duing both coses, we sony:

Ia a and b ane b_{0} th positine.
sy-holize low do u expuss "a is positive"

$$
\begin{aligned}
& P(a)=\text { " } a \text { is positicu" } \\
& P(a) \wedge P(b)
\end{aligned}
$$

Legation: $\sim P(a) \vee \sim P(b)$

$$
\begin{aligned}
& a>0=\text { "a is positive" } \\
& (a>0) \text {, }(b>0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { leg: }(a \neq 0) \vee(b \ngtr 0) \\
&(a \leqslant 0) \vee(b \leqslant 0)
\end{aligned}
$$

New material 10/26
GCD, Euclid's Lemma

Today: given $a, b \in \mathbb{Z}$
IDEA 1: all numbers that can be ford os linear combinations of a and b
(recalls a linear combo of a and b is an expression $a x+b y, x, y \in \mathbb{Z}$)

IDEA2: the Greatest common divisor of a and b, where $a, b \in \mathbb{T}$ and at lost ore of them is nonzero, is the largest integer d such that
(1) $d \mid a$ and $d / b\left(\begin{array}{c}\text { "dis a } \\ \text { common } \\ \text { divisor }\end{array}\right)$
(a) d is the longest common divisor, so it el and ell ("ers a, then $d \geqslant e$.

Ex: consider $a=6, b=4$
What are sore numbers re get as linear combinations of 6,4 ?

$$
6 x+4 y \quad x, y \in \mathbb{Z}
$$

is 10 a 'incur combo of 6,4 ?

$$
\text { Yes } 10=6.1+4.1
$$

is 20 a linear comb?

$$
\left.\begin{array}{l}
20=6 \cdot 2+4 \cdot 2 \\
40=6 \cdot 2+4 \cdot 7 \\
40=6 \cdot 6+4 \cdot 1 \\
40=6 \cdot 4+4 \cdot 4
\end{array}\right\}
$$

what about 16 ?

$$
\begin{aligned}
16 & =6 \cdot 0+4 \cdot 1 \\
16 & =6 \cdot 0+4 \cdot 4 \\
-6 & =6 \cdot(-1)+4 \cdot 0
\end{aligned}
$$

integer that re can obtain as a linear combo of 4,6?

$$
\begin{aligned}
10 & =6.1+4.1 \\
6 & =6.1+4.0 \\
4 & =6 \cdot 0+4.1 \\
2 & =6.1+4(-1) \\
1 & =? \\
0 & =6.0+4.0
\end{aligned}
$$

Theorem. Suppose $a, b \in \mathbb{Z}$ not both 0 . if $d=\operatorname{gcd}(a, b)$, then
(1) d is a linear contrition of a a b
(2) every linear combo of a and b is a multiple of d, and vice versa

