Vocabulary

- theorem	- parity
- proof	- divides
- definition	- divisor
- proposition, lemma, corollary	- multiple
- even	
- odd	- direct proof

Definitions

- A theorem is a statement that is true, and has been proved to be true.
- A proof of a theorem is a written verification that a theorem is definitely and unequivocally true.
- A definition is an exact, unambiguous explanation of the meaning of a mathematical word, phrase, or symbol.
- Words that mean the same thing as "theorem", but are used in special ways:
- A statement that is true (and proven), but is not as significant as a theorem is sometimes called a proposition
- A lemma is a theorem whose main purpose is to help prove another theorem (a"little theorem, used along the way")
- A corollary is a result that is an immediate consequence of a theorem or proposition ("a little something extra, that we get for free, having completed the theorem")

Mathematical Definitions \& Facts

- Definition. An integer n is even if $n=2 a$ for some integer $a \in \mathbb{Z}$.
- Definition. An integer n is odd if $n=2 a+1$ for some integer $a \in \mathbb{Z}$.
- Definition. Two integers have the same parity if they are both even or both odd. Otherwise they have opposite parity.
Definition. Suppose a and b are integers. We say that a divides b, written $a \mid b$, if $b=a c$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and that b is a multiple of a.
- Definition. A natural number n is prime if it has exactly two distinct positive divisors, 1 and n.
- Definition. A natural number n is composite if it factors as $n=a b$ where $a, b>1$.
- Fact. Suppose a and b are integers. Then so are $a+b, a-b$, and $a b$. (closuse of \mathbb{Z})

Therefore Q.

Exit
Prop. If x is odd, then x^{2} is odd.
Proof: Suppose x is odd so x is an integer and $x=2 a+1$ for som $a \in \mathbb{Z}$, by the definition of odd. $X \cdot X \in \mathbb{Z}$ by closing $f \mathbb{Z}$ under nutisliations since $x=2 a+1$,
$x^{2}=(2 a+1)^{2}$ by rubs of algebra

$$
x^{2}=4 a^{2}+4 a+1
$$

$x^{2}=\left(4 a^{2}+4 a\right)+1$

$$
x^{2}=2\left(2 a^{2}+2 a\right)+1
$$

let $b=2 a^{2}+2 a$, so $x^{2}=26+1$
then $b \in \mathbb{Z}$, since $a \in \mathbb{Z}, \gamma \in \mathbb{Z}$ and \mathbb{Z} is closed vader andaddirition.
Thus $x^{2} \in \mathbb{Z}$ and $x^{2}=2 b+1$ for $b \in \mathbb{Z}$

Therefore, x^{2} is odd, by the defamer odd QED
\square
\square

Proof. Suppose a, b, c a reintegeoss and alb and b / c. This $b=a \cdot h$ forson $k \in \mathbb{Z}$ and $c=b$. forbore $i \in \mathbb{Z}$, by definition of "divides".

$$
\begin{aligned}
& c=b \cdot i=(a \cdot h) i \\
& c=a h i
\end{aligned}
$$

let $m=h \cdot i$.
then $m \in \mathbb{Z}$ becusse $h \in \mathbb{Z}, i \in \mathbb{Z}$ and \mathbb{Z} is dosed under multiplication.
$=a \cdot m$ tor sone $m \in \mathbb{Z}$
Therefore, ac, by def of d inge S_{\square}
IR is closed unefer multiplication, addition, subtraction.
nears you cannot escape from \mathbb{Z} by performing these operations.
if $a, b \in \mathbb{Z}$

$$
\left.\begin{array}{l}
a b \in \mathbb{Z} \\
a+b \in \mathbb{Z} \\
a-b \in \mathbb{Z}
\end{array}\right\}
$$

Prop if $\mathfrak{E N}$, theo
F $(-1)^{n}(2 n-1)$ is a multiple of 4 .

Proof: Suppose $n \in \mathbb{N}$. Casel n is even
 forson $a \in \mathbb{Z}$ bydefn of even.
bos sursfifuting,

$$
\begin{aligned}
& 1+(-1)^{n}(2 n-1)= \\
& 1+\left((-1)^{2 a}\right)^{\prime}(2(2 a)-1)= \\
& 1+1(4 a-1)=1+4 a-1=4 a \\
& 1+(-1)^{n}(2 n-1)=4 \cdot a, a \in \mathbb{Z}
\end{aligned}
$$

Thereture $1+(-1)^{1+(-1)}(2 n-1)=4 \cdot a, a \in \mathbb{Z}(2 n-1)$ -
multiple of 4, by definitions
Case 2 is odd
therefore $1+(-1)^{n}(2 n-1)$ is a multiple of 4 .

Assignment5-Sec3.1-3.4: Problem 7 (6 points) Library/Rochester/setProbability 1 Combinations/ur_pb_1_9.pg

This set is visible to students.
In how many ways can 5 different novels, 2 different mathematics books, and 1 biology book be arranged on a bookshelf if
(a) the books can be arranged in any order?
Answer:
(b) the mathematics books must be together and the novels must be together?

Answer: $\square!-2!-1 \cdot 3!$
(c) the mathematics books must be together but the other books can be arranged in any order?

Answer: \square ! •3! 2!

