Vocabulary

- theorem	- parity
- proof	- divides
- definition	- divisor
- proposition, lemma, corollary	- multiple
- even	-direct proof
- odd	

Definitions

- A theorem is a statement that is true, and has been proved to be true.
- A proof of a theorem is a written verification that a theorem is definitely and unequivocally true.
- A definition is an exact, unambiguous explanation of the meaning of a mathematical word, phrase, or symbol.
- Words that mean the same thing as "theorem", but are used in special ways:
- A statement that is true (and proven), but is not as significant as a theorem is sometimes called a proposition
- A lemma is a theorem whose main purpose is to help prove another theorem (a "little theorem, used along the way")
- A corollary is a result that is an immediate consequence of a theorem or proposition ("a little something extra, that we get for free, having completed the theorem")

Mathematical Definitions \& Facts

- Definition. An integer n is even if $n=2 a$ for some integer $a \in \mathbb{Z}$.
- Definition. An integer n is odd if $n=2 a+1$ for some integer $a \in \mathbb{Z}$.
- Definition. Two integers have the same parity if they are both even or both odd. Otherwise they have opposite parity.
- Definition. Suppose a and b are integers. We say that a divides b, written $a \mid b$, if $b=a c$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and that b is a multiple of a.
- Definition. A natural number n is prime if it has exactly two distinct positive divisors, 1 and n.
- Definition. A natural number n is composite if it factors as $n=a b$ where $a, b>1$.
- Fact. Suppose a and b are integers. Then so are $a+b, a-b$, and $a b$.
Proofs

A theorem is a statement that is true, and has been proved.
A proof is a written verification that a theorem is definitely and unequivocally true.
A definition is an exact, unambiguous explanation of the meaning of a word, phase, notion.

Proofs are about communication
\qquad
Vocab: things that mean "theorem":

- proposition
- lemma
- corollary

Definitions
things already defined:

$$
\begin{aligned}
& \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \\
& \epsilon, \underline{\infty}, \\
& +, x,-\cdots
\end{aligned}
$$

Def: An integer n is even if $n=2 a$ for some integer a. ex! is $n=6$ even?

$$
\rightarrow \text { is } 6 \text { an integer? Yes (Known) }
$$

\rightarrow is $6=2$ a for som integer a? yes: $6=2.3$, and 3 is an integer. thus G is even.

Is $x=0$ even?
O is arinteger, $0=2.0$
this $x=0$ is
even.
Defn: An in teger n is odd if $n=2 a+1$ for some integer a.

Theorem if a and b are integers, thenso are:

$$
\begin{aligned}
& a+b \\
& a-b \\
& a b
\end{aligned}
$$

(8) $a \div b$ is not recessavily an integer,

Direct Proof
notes almost all theorems hare the form "if P_{1} then Q ".
Proposition: $P \rightarrow Q$ Direct
Proof. Suppose P.
Therefore Q.

Ex
Prop. If x is odd, then x^{2} is odd.
Proof: Suppose x is odd

Thevefore, x^{2} is odd

