- relations	- transitive
- reflexive	- antisymmetric
- symmetric	- irreflexive

- A relation on a set A is a subset $R \subseteq A \times A$. We often abbreviate the statement $(x, y) \in R$ as $x R y$. The statement $(x, y) \notin R$ is abbreviated $\sim x R y$ or $x R y$.
- Suppose R is a relation on a set A.

1. Relation R is reflexive if $x R x$ for every $x \in A: \forall x \in A, x R x$
2. Relation R is symmetric if $x R y$ implies $y R x$ for all $x, y \in A: \forall x, y \in A, x R y \Rightarrow y R x$
3. Relation R is transitive if whenever $x R y$ and $y R z$, then also $x R z$: $\forall x, y, z \in A,((x R y \wedge y R z) \Rightarrow x R z)$
4. Relation R is antisymmetric if for $x, y \in A, x R y$ and $y R x$ implies $x=y$: $\forall x, y \in A,(x R y \wedge y R x) \Rightarrow x=y$
5. Relation R is irreflexive if $\sim x R x$ for all $x \in A: ~ \forall x \in A, \sim x R x$

Example

Consider the set $A=\{1,2,3,4,5\}$, and the relation ' $<$ ' (less than). Make a complete list of correct comparisons of members of A according to ' $<$ '. (for example: $1<2,2<5,3<4$, etc.).

Example

Let $A=\{1,2,3,4\}$, and consider the set
$R=\{(1,1),(2,1),(2,2),(3,3),(3,2),(3,1),(4,4),(4,3),(4,2),(4,1)\} \subseteq A \times A$.

1. True or false: a. 1R1b. 2R1 c. 1R2 d. 4R4 e. 2R4
2. What does R mean? (What familiar relation does R represent?)

Example

Let $A=\{1,2,3,4\}$, and consider the set
$S=\{(1,1),(1,3),(3,1),(3,3),(2,2),(2,4),(4,2),(4,4)\} \subseteq A \times A$.
What does S mean?

Example

Here is a picture of a relation U on a set B.

Find the sets B and U.

Example

Consider the set $R=\{(x, x): x \in \mathbb{R}\}$. What does R represent?

Example

Consider the set $A=\mathbb{Z}$, the integers. For each of the following relations, determine if it is reflexive, symmetric, transitive, antisymmetric or irreflexive
a. $<$
b. \leq
c. $=$
d. \neq

Example

Let $A=\{b, c, d, e\}$ and $R=\{(b, b),(b, c),(c, b),(c, c),(d, d),(b, d),(d, b),(c, d),(d, c)\}$
Determine whether R is reflexive, symmetric, transitive, antisymmetric or irreflexive.

Relation: describes a relationship or comparison between objects. Car be true or false.
Ex.

$$
\begin{aligned}
& 5<7 \\
& 14 \geqslant 2 \\
& 3<1 \\
& A \subseteq B \\
& \\
& A \mid 12 \\
& 7=7 \\
& 7 \\
& 3=5
\end{aligned}
$$

Ex: Let $A=\{1,2,3,4,5\}$ vars that $\begin{gathered}\text { vase } \\ \text { arsing } \\ \text { to }\end{gathered}$ consider the relation" on A "to ornery

$$
\begin{aligned}
& \text { let } R=\{(1,5),(1,2),(2,4),(1,3),(1,4),(2,3) \\
& (3,4),(2,5),(3,5),(4,5)\}
\end{aligned}
$$

ne cor use R to augur questions about $<$ on A.
ex: is $2<5$? loo for $(0,5) \in R$. $2<S$ $(2,5) \in R, 2 R 5$
is $5<3$? loon for $(5,3)$ ing $5 \nless 3$
sine
$(5,3) \in R, 5 k 3$
$I D E A$ with the set R, we know everything about the relation < on the set $A=\{1,2,3,4,5\}$.

Deft. A relation R or a set A is a sublet $R \subseteq A \times A$.

$$
\text { let } \left.\begin{array}{rl}
R= & \{(1,5),(1,2),(2,4),(1,3),(1,4),(2,3) \\
(3,4),(2,5),(3,5),(4,5)\}
\end{array}\right\}
$$

Picture at a relation as a directed graph

- ore point for each element it A
- ore arrow (directed edge)

From x to y for each

$$
(x, y) \in R .
$$

picture of $<$ on $\{1,2,3,4,5\}$,

loo hing at graph,

$$
\text { is } 4<27 ? N_{\text {, }}
$$

next proper firs of

a reaction R on a ref A
is reflexive if

$$
\forall x \in A, \quad(x, x) \in R
$$

$Q:$ is $<$ on $\{1,2,3,4,5\}$ reflexive? why or why not?

If it were reflexive,

$$
\left.\begin{array}{c}
(1,1) \notin R \\
(2, H) \notin R \\
(3,1) \notin R
\end{array}\right\} \begin{aligned}
& \text { theseave } \\
& \text { tree, so } \\
& \text { is rot } \\
& \text { reflexive. }
\end{aligned}
$$

