Sec 11.0, 11.1

| - relations | - transitive    |
|-------------|-----------------|
| - reflexive | - antisymmetric |
| - symmetric | - irreflexive   |

# **Definitions & Theorems**

- A **relation** on a set A is a subset  $R \subseteq A \times A$ . We often abbreviate the statement  $(x, y) \in R$  as xRy. The statement  $(x,y) \notin R$  is abbreviated  $\sim xRy$  or  $x \not R y$ .
- Suppose R is a relation on a set A.
  - 1. Relation *R* is **reflexive** if xRx for every  $x \in A$ :  $\forall x \in A, xRx$
  - 2. Relation R is symmetric if xRy implies yRx for all  $x, y \in A$ :  $\forall x, y \in A$ , xRy  $\Longrightarrow$  yRx
  - 3. Relation R is **transitive** if whenever xRy and yRz, then also xRz:  $\forall x, y, z \in A, ((xRy \land yRz) \Longrightarrow xRz)$
  - 4. Relation R is **antisymmetric** if for  $x, y \in A$ , xRy and yRx implies x = y:  $\forall x, y \in A , (xRy \land yRx) \Longrightarrow x = y$
  - 5. Relation *R* is **irreflexive** if  $\sim xRx$  for all  $x \in A$ :  $\forall x \in A, \sim xRx$

# Example

Consider the set  $A = \{1, 2, 3, 4, 5\}$ , and the relation '<' (less than). Make a complete list of correct comparisons of members of A according to '<'. (for example: 1 < 2, 2 < 5, 3 < 4, etc.).

## Example

Let  $A = \{1, 2, 3, 4\}$ , and consider the set

 $R = \{(1,1),(2,1),(2,2),(3,3),(3,2),(3,1),(4,4),(4,3),(4,2),(4,1)\} \subseteq A \times A \ .$ 

- 1. True or false: a. 1R1b. 2R1 c. 1R2 d. 4R4 e. 2R4
- 2. What does R mean? (What familiar relation does R represent?)

## Example

Let  $A = \{1, 2, 3, 4\}$ , and consider the set

 $S = \{(1,1),(1,3),(3,1),(3,3),(2,2),(2,4),(4,2),(4,4)\} \subseteq A \times A.$ 

What does S mean?

#### Example

Here is a picture of a relation U on a set B.



Find the sets B and U.

## Example

Consider the set  $R = \{(x,x) : x \in \mathbb{R}\}$ . What does R represent?

# Example

Consider the set  $A = \mathbb{Z}$ , the integers. For each of the following relations, determine if it is reflexive, symmetric, transitive, antisymmetric or irreflexive

d. ≠

## Example

 $\text{Let } A = \{b,c,d,e\} \text{ and } R = \{(b,b),\,(b,c),\,(c,b),\,(c,c),\,(d,d),\,(b,d),\,(d,b),\,(c,d),\,(d,c)\}$ 

Determine whether R is reflexive, symmetric, transitive, antisymmetric or irreflexive.

Relation: describes a relationship or composison between objects. Can be true or folse.

Ex. 5 < 7 T

1472 T

3<1 F

A = B

3 | 12

7 = 7 T

3 = 5 F

Thue 10 1<5, 1<2, 2<4, the selection on A. compared true shakes the relation of the selection of the selecti

 $le+R=\{(1,5),(1,2),(2,4),(1,3),(1,4),(3,3)\}$ 

ex: is 225? look for (3,5) eR. since (3,5) eR, 2RS

is 523? look for (5,3) in \$ 543

is 523? look for (5,3) in \$ 543

(5,3) eR,5 k3

[DEA: with the set R, we know everything about the relation 2 on the set

A = \{1,2,3,4,3\}.

Défn. A relation R or a set A is a subset  $R \subseteq A \times A$ .

 $le+R=\{(1,5),(1,2),(2,4),(1,3),(1,4),(3,3)\}$ 

A= [1,2,3,4,5]



Picture et a relation as a directed graph oore point for pachplerent of A · ore arrow (directed edge) from x to g for each (4,5) ER, quetous of C on [1,1,3,4,5] 100 hing at graph,

15 15 7 y sterrison 145. looking at graph, 15 4625. Kron A tog. next properties of relations ex: reflexive

a relation Rona set A is reflexive if  $\forall x \in A, (x,x) \in \mathbb{R}$ Q: is < on [1,1,3,4,5]
reflexive? why or
why not? II it revereflexive, (1,1) & R) He se are (3,1) & R He se are (3,1) & R He se are (3,1) & R He se are reflexive.