Day 21 Chapter 9: Disproof | - conjecture | - disproof
- counterexample | |--------------|--------------------------------| | - conjecture | 1 * | Example. Is each proposition true or false? - 1. Every even natural number is the sum of two odd natural numbers. - 2. Every even natural number is the sum of two perfect squares. - 3. Every even natural number is the sum of two primes. ## THREE TYPES OF STATEMENTS: | Known to be true
(Theorems & propositions) | Truth unknown
(Conjectures) | Known to be false | |--|---|--| | Examples: Pythagorean theorem Fermat's last theorem (Section 2.1) The square of an odd number is odd. The series ∑_{k=1}[∞] 1/k diverges. | Examples: All perfect numbers are even. Any even number greater than 2 is the sum of two primes. (Goldbach's conjecture, Section 2.1) There are infinitely many prime numbers of form 2ⁿ − 1, with n∈N. | Examples: All prime numbers are odd. Some quadratic equations have three solutions. 0 = 1 There exist natural numbers a,b and c for which a³ + b³ = c³. | ## **Definitions & Theorems** - Definition. A statement whose truth is unknown is called a conjecture. - Definition. When we prove a statement P is false, we call this a disproof of P. **How to Disprove P:** Prove $\sim P$. **CHEAT SHEET:** How to disprove a statement of the form... - To disprove $\forall x P(x)$, give an example of an x that makes P(x) false (such an x is called a counterexample). - To disprove $P(x) \Longrightarrow Q(x)$, give an example of an x that makes P(x) true but Q(x) false. - To disprove $\exists x P(x)$, prove the statement $\forall x, \sim P(x)$. - To disprove P by contradiction, assume P is true and deduce a contradiction $C \land \sim C$. ## Prove or disprove each conjecture. Conjecture. For every $n \in \mathbb{Z}$, the integer $f(n) = n^2 - n + 11$ is prime. Conjecture. If A, B and C are sets, then $A - (B \cap C) = (A - B) \cap (A - C)$. Conjecture. If A and B are sets, then $P(A) - P(B) \subseteq P(A - B)$. Conjecture. For every $n \in \mathbb{Z}$, the integer $f(n) = n^2 - n + 11$ is prime. To get the integer f(n) for every $n \in \mathbb{Z}$, the integer f(n) for every f(n) = 3 Disproat of (orienture: if n=11, then f(n)=12) which is not prime. Thus the conjecture is false Conjecture. If A, B and C are sets, then $A - (B \cap C) = (A - B) \cap (A - C)$. False $$A = \{x, y, z, v\}$$ $C = \{y, v\}$ and (A-B) (A-C)-1, {x,2}, (x,y) Thus A (Bnc) # (A-B) (A-C)