Day 21

Chapter 9: Disproof

- conjecture	- disproof - counterexample
- conjecture	1 *

Example. Is each proposition true or false?

- 1. Every even natural number is the sum of two odd natural numbers.
- 2. Every even natural number is the sum of two perfect squares.
- 3. Every even natural number is the sum of two primes.

THREE TYPES OF STATEMENTS:

Known to be true (Theorems & propositions)	Truth unknown (Conjectures)	Known to be false
 Examples: Pythagorean theorem Fermat's last theorem (Section 2.1) The square of an odd number is odd. The series ∑_{k=1}[∞] 1/k diverges. 	 Examples: All perfect numbers are even. Any even number greater than 2 is the sum of two primes. (Goldbach's conjecture, Section 2.1) There are infinitely many prime numbers of form 2ⁿ − 1, with n∈N. 	 Examples: All prime numbers are odd. Some quadratic equations have three solutions. 0 = 1 There exist natural numbers a,b and c for which a³ + b³ = c³.

Definitions & Theorems

- Definition. A statement whose truth is unknown is called a conjecture.
- Definition. When we prove a statement P is false, we call this a disproof of P.

How to Disprove P: Prove $\sim P$.

CHEAT SHEET: How to disprove a statement of the form...

- To disprove $\forall x P(x)$, give an example of an x that makes P(x) false (such an x is called a counterexample).
- To disprove $P(x) \Longrightarrow Q(x)$, give an example of an x that makes P(x) true but Q(x) false.
- To disprove $\exists x P(x)$, prove the statement $\forall x, \sim P(x)$.
- To disprove P by contradiction, assume P is true and deduce a contradiction $C \land \sim C$.

Prove or disprove each conjecture.

Conjecture. For every $n \in \mathbb{Z}$, the integer $f(n) = n^2 - n + 11$ is prime.

Conjecture. If A, B and C are sets, then $A - (B \cap C) = (A - B) \cap (A - C)$.

Conjecture. If A and B are sets, then $P(A) - P(B) \subseteq P(A - B)$.

Conjecture. For every $n \in \mathbb{Z}$, the integer $f(n) = n^2 - n + 11$ is prime.

To get the integer f(n) for every $n \in \mathbb{Z}$, the integer f(n) for every f(n) = 3 for

Disproat of (orienture: if n=11, then f(n)=12)

which is not prime. Thus the

conjecture is false

Conjecture. If A, B and C are sets, then $A - (B \cap C) = (A - B) \cap (A - C)$.

False
$$A = \{x, y, z, v\}$$
 $C = \{y, v\}$
 $C = \{y, v\}$

and (A-B) (A-C)-1, {x,2}, (x,y) Thus A (Bnc) # (A-B) (A-C)