Vocabulary

- Proof that $x \in A$	- Proof that $A \subseteq B$ - Proof that $A=B$

Review of Sets: Main definitions from Chapter 1

- Defn. $A \times B=\{(x, y): x \in A, y \in B\}$
- Defn. $A \cup B=\{x:(x \in A) \vee(x \in B)\}$
- Defn. $A \cap B=\{x:(x \in A) \wedge(x \in B)\}$
- Defn. $A-B=\{x:(x \in A) \wedge(x \neq B)\}$
- Defn. $\bar{A}=U-A$
- Defn. $P(A)=\{X: X \subseteq A\}$

How to prove $a \in A$.
Show that the given object a satisfies the definition of the set A.

Example. a. If $a=\{2,12,17\}$ and $A=\{X \in P(\mathbb{N}):|X|=3\}$, then prove $a \in A$.
b. If $C=\left\{3 x^{3}+2: x \in \mathbb{Z}\right\}$, then prove $-22 \in C$.

How to prove $A \subseteq B$
To prove $A \subseteq B$, prove the statement: if $a \in A$, then $a \in B$.

Direct Proof	Contrapositive Proof
Proof. Suppose $a \in A$.	Proof. Suppose $a \notin B$.
\ldots	\ldots
Therefore $a \in B$.	Therefore $a \notin A$.
Thus $a \in A$ implies $a \in B$,	Thus $a \notin B$ implies $a \notin A$, and
and so $A \subseteq B$.	so $A \subseteq B$.

Example 8.5. Prove that $\{x \in \mathbb{Z}: 18 \mid x\} \subseteq\{x \in \mathbb{Z}: 6 \mid x\}$

Example 8.8. Prove that if A and B are sets, then $P(A) \cup P(B) \subseteq P(A \cup B)$.

Example 8.9. Suppose that A and B are sets. If $P(A) \subseteq P(B)$ then $A \subseteq B$.

How to prove $A=B$
Proof.
[Prove $A \subseteq B$.]
[Prove $B \subseteq A$.]

Therefore, since $A \subseteq B$ and $B \subseteq A$, it follows that $A=B$.

Example 8.12. Given sets A, B and C, prove $A \times(B \cap C)=(A \times B) \cap(A \times C)$.

Exam,
Prof. If $a=\{2,27,312\}$, then

$$
a \in\{x \in P(\mathbb{N}):|x|=3\}
$$

Proof Note: $a \leq \mathbb{N}$ (since every mentor of a is anat ural number).

$$
\text { ot a is } P(N) \text {. }
$$

also $|a|=3$.
Thus at $\{x \in P(N):|x|=3\}$.
Prop. let $C=\left\{3 x^{2}+2: x \in \mathbb{Z}\right\}$.
then $-22 \in C$.
Proof. The statant is False, $\begin{gathered}3 \cdot 11^{2}+2=5 \\ 5 \in C\end{gathered}$ all elements of C are positive.

Prop. let $C=\left\{3 x^{3}+2: x \in \mathbb{Z}\right\}$.
then $-22 \in C$.
Proof, Let $x=-2$,

Then $3(-2)^{3}+2=3(-8)+2=-24+2$

$$
=-22
$$

thus $-2 \boldsymbol{A} \in \mathrm{C}$.
$\frac{\text { Dr.garssion - Set operations (clupller 1' }}{\text { A, B sets }}$

$$
A, B \text { sets }
$$

$A \times B=\{(a, b): a \in A$, and $b \in B\}$
$A \cup B=\{x: x \in A$ or $x \in B\}$
$A \wedge B=\{x: x \in A$ and $x \in B\}$
$A-B=\{x: x \in A$ and $x \notin B\}$
$\bar{A}=U-A=\{x \in U: x \notin A\}$
$P(A)=\{x: x \leq A\}$
Subset Proofs
Prof $A \subseteq B$

Direct proof

Thus $a \in B$.
Therfore $A \subseteq B_{B}$

Thus a\&A
Thereve $A \subseteq B_{\square}$

Example
Prof. $\{x \in \mathbb{Z}: 18 \mid x\} \leq\{x \in \mathbb{Z}: 6 \mid x\}$
Proof (D.ect). Suppose $a \in\{x \in \mathbb{Z}: 18 \mid x\}$.
Thes $a \in \mathbb{Z}$ and 18|a.
So $a=18 b$ For rome $b \in \mathbb{Z}$, by Jefn. of $a=6(3 b)$, wite $36 \in \mathbb{Z}$ byclosues. \mathbb{Z} Thus 6/a by defo of ulvides.

Ther $a \in\{x \in \mathbb{Z}: 6 \mid x\}_{\square}$
Prop If A, B are sets, then $P(A) \cup P(B) \subseteq P(A \cup B)$
Proof Suppose A, B are sefs
Suppose $c \in P(A) \cup P(B)$
Thes $C \in P(A)$ or $c \in P(B)$ by defrof U.
WLOG sund ${ }^{\text {sex }} c \in P(A)$.
this $C \subset A$ by deta. $A P(A)$.
$A \subseteq A \cup B$ by defn of U

Thus $c \in P(A \cup B)$ by defy of $P(A, B)$.
cased: $c \in P(B)$
this $C \in B$
$B \subset / A \subset B$
turfy. $C \subseteq A \cup B$ $c \in P(A \cup B)$

Set Equality
Prop $A=B$
Proof [prove $A \subseteq B$]
$[$ prove $B \subseteq A]$
Thus $A=B_{\square}$

Proposition Suppose A, B and C are sets, then $A \times(B \cap C)=(A \times B) \cap(A \times C)$

$$
\operatorname{Prace}(\subseteq) \text { suppose }(q, r) \in A \times(B \cap C)
$$

fin $p=(q, r), q \in A, r \in B \cap C$ by defeat ovulated pair.
Since $r \in B \cap C$, in persfeclor $r \in B$ ard $r \in C$ by diva of Ω.
Since $q \in A$ and $r \in B$, then $(q, r) \in A \times B$ by defer of x.
since $r \in C$, the $(q, r) \in A \times C$
and
Thus $(q, r) \in(A \times B) \cap(A \times C)$ bon In?
(2) Suppose $p \in(A \times B) \wedge(A \times C)$ then $p \in A \times B$ and $p \in A \times C \xrightarrow{\text { ha darn }}$.
since $p \in A \times B, p=(q, r) \quad q \in A_{\text {and }}, \beta B$ by din x
$(q, r) \in A \times C$ so $q \in A$ and $r \in C$
This $r \in B n($ by defin Λ.
since $p \in A$ and $r \in B \cap C$ by $\left\{\begin{array}{l}\text { an } \\ x\end{array}\right.$
then $(p, r) \in A \times(B \cap C) o^{r}$

