Day 20

Chapter 8: Proofs involving sets

Vocabulary

- Proof that $x \in A$	- Proof that $A \subseteq B$
	- Proof that $A = B$

Review of Sets: Main definitions from Chapter 1

- Defn. $A \times B = \{ (x, y) : x \in A, y \in B \}$
- Defn. $A \cup B = \{x : (x \in A) \lor (x \in B)\}$
- Defn. $A \cap B = \{x : (x \in A) \land (x \in B)\}$
- Defn. $A B = \{ x : (x \in A) \land (x \notin B) \}$
- Defn. $\overline{A} = U A$
- Defn. $P(A) = \{X : X \subseteq A\}$

How to prove $a \in A$.

Show that the given object *a* satisfies the definition of the set A.

Example. a. If $a = \{2, 12, 17\}$ and $A = \{X \in P(\mathbb{N}) : |X| = 3\}$, then prove $a \in A$. b. If $C = \{3x^3 + 2 : x \in \mathbb{Z}\}$, then prove $-22 \in C$.

How to prove $A \subseteq B$ To prove $A \subseteq B$, prove the statement: if $a \in A$, then $a \in B$.

Direct Proof	Contrapositive Proof
<i>Proof.</i> Suppose $a \in A$.	<i>Proof.</i> Suppose $a \notin B$.
Therefore $a \in B$.	Therefore $a \notin A$.
Thus $a \in A$ implies $a \in B$,	Thus $a \notin B$ implies $a \notin A$, and
and so $A \subseteq B$.	so $A \subseteq B$.

Example 8.5. Prove that $\{x \in \mathbb{Z} : 18|x\} \subseteq \{x \in \mathbb{Z} : 6|x\}$

Example 8.8. Prove that if A and B are sets, then $P(A) \cup P(B) \subseteq P(A \cup B)$.

Example 8.9. Suppose that A and B are sets. If $P(A) \subseteq P(B)$ then $A \subseteq B$.

How to prove A=B Proof. [Prove $A \subseteq B$.] [Prove $B \subseteq A$.] Therefore, since $A \subseteq B$ and $B \subseteq A$, it follows that A = B.

Example 8.12. Given sets A, B and C, prove $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Example rop. It a = {2, 27, 3123, then $a \in \{x \in P(N): |x| = 3\}.$ Proof Note: a = N (since every menter of a is anatural number). so a & P(N). also 1a1=3. Thes at {x + P(N): 1x1 = 33. $P_{oop.}$ let $C = \{3x^2+1\}: x \in \mathbb{Z}\}.$ Proof the state of is false, all elevents of C then -22 EC. are possidire. Prop. let $C = \{3x^3+\}: x \in \mathbb{Z}\}$. then $-22 \in C$. Proof. Let x=-2.

then $3(-3)^{3}+3=3(-8)+3=-34+3$ $= - \partial J$ this -27 EC. B

Digression-set operations (recoll from A.R. - f. A,B sets A×B= (Ca,b): a FA, and b FB3 AUB = {x: x f A or x EB} $A \wedge B = \{x : x \in A \text{ and } x \in B\}$ $A-B = \{x: x \in A \text{ and } x \notin B\}$ $A = U - A = \{x \in U : x \notin A \}$ $(\mathcal{P}(A) = \{x : x \in A\})$

Subset Proofs Prof. A = B What we want to prove is the statement: if a E Atten Contrapositive Proof Direct proof Proat Survose at B Det Carolo a C

grad Suprese aETT Thus a # A Thurtare A = BO This aFB. Therefore ASB

Example $\{x \in \mathbb{Z} : |8|x\} \subseteq \{x \in \mathbb{Z} : 6|x\}$ Prop. Proof (Direct). Suppose a E {x EZ : 18 |x}. This af Z and 181a. So a=18b for some bEZ, by Jetn. of a=6(3b), n.te 3bEZ by closurer Z Thus 6/a by defe of sinder. Thus a E {x E Z: 6 |x } 1 $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$ Prop If A, B are sets, then Proof Suppose A, B are sets Suppose c E P(A) u P(B) Thus c E P(A) or c E P(B) by LeFnoFU. WLOG SUPPOR F P(A). this CEA by default P(A). AEAUB by default U thistone C AUR

C SAOD

Thus c E P(AUB) by det of P(AUB). (ase): CF(B) this CEB B S/A-B Hurty C & Aub CEQ(AUB)

Set Equality Prop A=B Proof [prove ASB] [prove B = A] This A=Bn

Veroposition Suppose A, Band Care sets, then Ax(BnC)=(AxB) n (AxC) Proct (=) suppose get (Br()

then p=(q,r), q & A, r & BAC by defined peir. Since r f BAC, in particular r FBard r fC by defen of A. since ged and - FB, then (q,r) (AxB by detrod x. since rec , the Pape AxC and This (q,r) F(A×B) ~ (A×C) bo fr (=) suppose pE(AxB)n(Axc) +Lin pEAxB and pEAxC mblin Since $p \in A \times B$, $p = (q, r) q \notin A order \# B$ by defin \times (q,r) FAx(so get and rEC This rEBAC by John A. since pEA and rE BAC hitsh then (p,r) E Ax (BAC) of X