Prop Every even natural number can be written as the sum of two odd numbers

$$
\begin{array}{ccc}
n=10, & 3+7, & 1+9,5+5 \\
n=12 & 1+11,5+7,9+3, \text { etc... } \\
n=106,378 & 106377+1 \\
\text { TD10F } & 106375+3 \\
n & \text { etc,.. }
\end{array}
$$

$$
T R_{\text {Pleat }} Y E .
$$

Proof $f{ }^{\text {(lImen) }} \mathrm{S}_{\mathrm{c}}$ pose n is an even natural number.

$$
\begin{aligned}
& n-1 \text { is odd (by th divisionalyovithm). } \\
& 1 \text { is odd } \\
& \text { and }(n-1)+1=n
\end{aligned}
$$

Prop. Every even ratural number cor be written as the sum of two perfect squares.

$$
n=14
$$

Perfect square $\{0,1,4,9,16,25, \ldots\}$
a counter example
FALSE
Prop. Every even natural number (except 2) can be written as the sum of two a insecure primes.

$$
\begin{array}{ll}
n=18 & 7+11 \\
n=26 & 7+19,13+13 \\
n=28 & 23+5 \\
n=36 & 29+7
\end{array}
$$

Prof (direct) Suppose $n \in \mathbb{N}$, wis even, $n \neq 2$. UNHNOWN what her rue ar false.

$$
N=\text { Drives } u \text { Composite } \cup\{1\}
$$

new types of prot:
a IF and-only-it (biconlitional)

- Existential staterents

$$
\text { condition } \quad P \rightarrow Q
$$

$$
\begin{aligned}
& \text { Mothods } \\
& \text { Gf } \\
& \text { prot }
\end{aligned}\left\{\begin{array}{l}
\text { - Direct } \\
\text { - contra positive } \\
\text { - contradiction }
\end{array}\right.
$$

bicorditional $\quad P \longleftrightarrow Q$
Recall $P_{L} \leftrightarrow Q=(P \rightarrow Q) \wedge(Q \rightarrow P)$
To prove $P \leftrightarrow Q$
Prop. $P \underset{\text { in Forenill dirdion ..." }}{\longleftrightarrow}$
Proof [Stepl: \because "i $P \rightarrow Q$, using direct contrig oritivi, or condrodiction $]$ condrodiction]
-converely, $\left[\right.$ stepd: $Q \rightarrow P^{8}$, using direct, coulmporiilune, contradiction]
\qquad
Prop Suppose $x \in \mathbb{Z}$. x is odd if and only if x^{2} is odd. Q
Proof. In the forward direction, suppose $x \in \mathbb{Z}$ $P \rightarrow Q$ and x is odd.
sonvaep So $x=2 u+1, r \in \mathbb{Z}$ by defy of ord.

$$
\begin{aligned}
& x^{2}=(2 n+1)^{2} \\
& x^{2}=4 n^{2}+4 n+1 \\
& x^{2}=2\left(2 n^{2}+2 n^{2}+1, \text { (c les } n a\right)
\end{aligned}
$$

note $2 n^{2}+2 n \in Z$ by c bruce of Z user
Thus x^{2} is oof., bs doth f add
[Therefore if x is odd flem x^{2} is odd].
if x^{2} ss od the wis ord
Conversely, suppose xis seven integer.

$$
Q \rightarrow P
$$

suppose $\sim p$
the $x=2 m, m \in \mathbb{Z}$ by offer
So $x^{2}=(2 m)^{2}$
Thus $\sim Q$

$$
x^{2}=4 m^{2}=2\left(2 m^{2}\right)
$$

$\partial n^{2} \in \mathbb{Z}$ bacbsue of Rudder.
Thus x^{2} is even budefn of

Thentore if x^{2} is add the x is odd. Thus x is odd ifand orly if x^{2} is odd

Existence proofs
Prop $\exists \times P(x)$
Proof. [give an example of some $x=a$, show $P(a)]$

Prop. There exits an even prime nonker.
Proof Consider the number 2
∂ is prime (it has division lard 2)
Lis even, since $2=2 \cdot 1,1 \in \mathbb{Z}$. by def n of ere.
Thus 2 is an even prime number.

