Day 14
Chapter 5

Vocabulary

- contrapositive proof

Proposition 1. If a is an integer, then either a is even or a is odd, but not both.

Proposition 2. Suppose $x \in \mathbb{Z}$. If $x^{2}-6 x+5$ is even, then x is odd.

Outline for Contrapositive Proof
Proposition. If P, then Q.
Proof. Suppose $\sim Q$.

Therefore $\sim P$.

Proposition 3. Suppose $x, y \in \mathbb{Z}$. If 5 does not divide $x y$, then 5 does not divide x and 5 does not divide y.

$$
\begin{aligned}
& \text { Prop If a is an integer, then a is either } \\
& \text { odd, or even, butnot both. }
\end{aligned}
$$

$$
\text { Proof. Suppose } a \in \mathbb{Z} \text {. }
$$ Notice that $a \in \mathbb{Z}$ (given) and $2 \in \mathbb{Z}$, and $2>0$, and so by the division algorithm, the exist unique $q, r \in \mathbb{Z}$ with $a=2 q+r$, and

what $\operatorname{con}^{n} r$ be
r must equal 0 or 1 .
If $r=0$, then $a=2 q+0$

$$
a=2 q
$$

So a iseven, by definition of
If $r=1$, then $a=2 q+1$
So a is odd, by definition
By uniqueness of r, the number a cannot be both od and even.
Contrapositive Proof
If $p \rightarrow q$ is a conditional statement, the contrapositive is

$$
\begin{aligned}
(\sim q) & \rightarrow(\sim p) \\
p \rightarrow q & =(\sim q) \rightarrow(\sim p)
\end{aligned}
$$

Outlive Contraposite Proof

Prop. $P=\vec{y}$
Prot. © Cotheosiapose $\sim Q$

$$
\begin{align*}
& \text { suppose } \sim \text { Q } \\
& \text { Thus } \sim P_{\square}
\end{align*}
$$

Proof (contrapositive). Suppose $x \in \mathbb{Z}$.
Suppose x is not odd.
Then x is ever (proven in class).
So $X=2 n, n \in \mathbb{Z}$, by definition of even.

$$
\begin{aligned}
& x^{2}-6 x+5=(2 n)^{2}-6(2 n)+5 \text { àmatation } \\
& =4 n^{2}-12 n+5 \\
& =4 n^{2}-1 n_{n+4}+4+1 \\
& =2\left(2 n^{2}-6 n+2\right)+11^{k+1}+m=2 m^{2}-6 n+15 \\
& x^{2}-6 x+5=2 m+1 \\
& \text { time Roy } \\
& \text { have }
\end{aligned}
$$

Thus $x^{2}-6 x+5$ is not even, rollass.

Proposidion. Suppase $\mathbb{Z}_{\text {if }} \rightarrow Q$
$x^{2}-6 x+5$ is even, ther xisodf.
Proat (direct). Suppose $x \in \mathbb{Z}$, and

$$
\left\{\begin{array}{c}
x=\frac{6 \pm 2 \sqrt{4}+\cdot n}{2} \\
x=3 \pm \sqrt{4+2 n} \\
\{? ?
\end{array}\right.
$$

this $x=2 m+1$ Thus x is odd.
$\frac{\text { Guiding Principle }}{\text { Its easier to go }}$ Its easier simple to tram complicate

Proposition 3. Suppose $x, y \in \mathbb{Z}$. If 5 does not divide $x y$, then 5 does not divide x and 5 does not divide y.

$$
P \rightarrow Q
$$

$$
P: 5 \lambda x y \quad Q: 5+x \text { and } 5 k y
$$

try direct:
Proof (dint): suppose $5 \times x y$
$x y \neq 5 n \quad f_{n}-n^{\prime \prime \prime} \in \mathbb{Z}$
not obvious how to wort with an inequation.

Thus sty and 5 ty
Proof (contrapositive)

$$
\sim(5+x \text { and } 5+y)
$$

Suppose 5/x or 5/y.
case 1: 5/x

case 2:51y
Thus S/xy

