Steen Eller Rasmussen.\ Experiencing Architecture

CHAPTER V

Scale and Proportion

Legend has it that one day when Pythagoras passed a smithy he
heard the clang of three hammers and found the sound pleasing.
He went in to investigate and discovered that the lengths of the
three hammer-heads were related to each other in the ratio of
6:4:3. The largest produced the keynote; the pitch of the
shorter was a fifth and that of the shortest an octave above it,
This led him to experiment with tautly stretched strings of dif-
ferent lengths and he ascertained that when the lengths were
related to each other in the ratios of small numbers the strings
produced harmonious sounds.

This is only a legend and in my opinion it is too good to be
true. But it tells us something essential about harmony and how
it is produced.

The Greeks tried to find some explanation for the phenomena
they observed. They said something like this: It makes the
soul happy to work with clear mathematical ratios and therefore
the tones produced by strings of simple proportions affect our
cars with delight.

The truth is, however, that a person listening to music has no
idea of the lengths of the strings that produce it. They have to be
seen and measured. But whatever the Greeks’ reasoning, they
found that there was some relation between simple mathematical
proportions in the visual world and consonance in the audible.
As long as no one was able to explain what happens when a tone
is produced and how it affects the listener, the relationship con-
tinued to be a mystery. But it was obvious that man was in pos-
session of a special intuition which made it possible for him to
perceive simple mathematical proportions in the physical world,
This could be demonstrated as regards music and it was believed
that it must be true of wisible dimensions also.

Architecture, which often employs simple dimensions, was
then as well as later frequently compared with music. It has been
called frozen music. That scale and proportion play a very im-
portant role in architecture is unquestionable. But there are no
visual proportions which have the same spontaneous effect on us
as those which we ordinarily call harmonies and disharmonies in
music.

The tones of music differ from other, more accidental noises
by being sounds produced by regular periodic vibrations and
having fixed pitch. Vibrations which result from striking a chord
constitute a keynote with a definite rate of frequency and a
series of overtones with frequency rates that are double, triple,
etc., the keynote rate. Tones with simple frequency ratios have
the same overtones and when they are sounded simultaneously a
new, absolutely regular period of vibrations will result and it will
still be heard as a musical tone. But if sound waves of slightly
different periods of vibration are set in motion the sound pro-
duced is incoherent and often directly unpleasant. If two sound
waves with a frequency ratio of 15: 16 arise simultaneously, they
will reinforce each other every time the one has vibrated fifteen
and the other sixteen times. This will produce extra large oscilla-
tions and between these strong blasts there will be points where
the vibrations annihilate each other so that they become prac-
tically inaudible. The result will be a tone of a weird, quavering,
uneven sequence which can be very unpleasant. A sensitive lis-
tener may actually get a stomachache from hearing such dis-
cords. But there is nothing analogous to this in the visual world,
for while we are immediately aware of false tones, small irreg-
ularities in architecture can be discovered only by careful meas-
uring. If two strings with lengths in the relation of 15:16 are
struck simultaneously the resulting sound will be distinctly un-
pleasant. But if in a building that is divided in regular bays a
difference in proportions of this same ratio were introduced prob-
ably no one would notice it. The truth is that all comparison of

architectural proportions with musical consonances can only be
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regarded as metaphor. Nevertheless innumerable attempts have
been made to work out principles of architectural proportioning
analogous to the mathematical principles of musical scales.
There is one proportion (incidentally without parallel in
music) which has attracted great attention ever since the days of
antiquity. This is the so-called golden section. Pythagoras and

a-tb

his disciples were interested in it, theorists of the Renaissance
took it up again, and in our day Le Corbusier has based his
principle of proportion, “Le Modulor,” on it. A line segment is
said to be divided according to the golden section when it is
composed of two unequal parts of which the first is to the second
as the second is to the whole. If we call the two parts @ and b,
respectively, then the ratio of a to b is equal to the ratio of b to
a+b. This may sound somewhat complicated but is easily
grasped when seen in diagram.

Until recently an ordinary Danish match box, bearing a pic-
ture of Admiral Tordenskjold, measured 36 x 58 mm. If we sub-
tract the shorter side from the longer we get 58 —36 = 22. It is
approximately true that 22 is to 36 as 36 is to 58. In other words,
the mutual relation of the sides is that of the golden section.

Unfortunately for Denmark the economic situation of tfle coun-
try made it necessary to reduce the length of m_atchsncks and
therefore Tordenskjold’s portrait is now placed in a rcct‘angle,
which is regarded as less ®sthetic. Formerly thf.: various sizes of
paper were also often based on the golden section and the same
was true of letter-press printing.

To Pythagoras the pentagram was a myst'ical and holy symbol.
A pentagram is a five-pointed star which is fc.:rmefl by lef'tgth-
ening the sides of a pentagon both ways to their points f’f inter-
section. The relation between the length of one of the sides of a
pentagram’s point and the side of a pentagon is the same as the
golden section. By connecting the five points of the pentagram
a new pentagon is formed, from that again a new pentagram, €tc.
In this way you get an infinite series of line segments which
grow according to the rule of the golden section. This can be
drawn in a diagram but these lengths cannot be expressed as
rational numbers. On the other hand, it is possible to draw up a
series of integers, the ratios of which come close to that of the
golden section. These are 1, 2, 3, 5, 8, 13, 21, 34 55, etc.,'each
new unit being formed by adding together the two immediately
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108 preceding. The remarkable thing about this series is that the Even when this has been explained, as here, you cannot ex- 109

higher it goes, the closer it approaches the golden section ratio,
Thus, the ratio 2:3 is far from it, 3:5 is closer, and 5:8 almost

there. Incidentally, 5:8 is the approximation in rational numbers
most often used.
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Ivar Bentsen: Project for a philharmonic building in Copenhagen, 1qr8

Around 1920 many attempts were made in Scandinavia to get
away from the romantic tendencies in architecture of the pre-
vious generation and to formulate clear msthetic principles. In
Norway Frederick Macody Lund published his great work “Ad
Quadratum" in which he sought to prove that the great histor-
ical works of architecture were based on the proportions of the
golden section. He suggested therefore that those proportions
should be used in the reconstruction of 'T' rondhjem Cathedral.
In Denmark the architect Ivar Bentsen designed a large project
for a philharmonic building in which the proportions were based
on the above-mentioned series. It was to be built on a square
grid in plan and in elevation to be proportioned according to the
golden section rule. The distance between the balusters on the
flat roof was the smallest unit, or module. The width of the pil-
lars was set at three of these units and the window width at five.
The top row of windows were square, that is 5 % 5, the next below
8 x 5, then 13 x 5, and finally the bottom row (which actually

comprised two stories—a ground floor of shops and a mezzanine)
was to be 21 x g.

perience the interrelationship in the proportions of the philhar-
monic building in the same way that you experience it in certain
natural phenomena in which there is a rhythmic progression in
proportions. Many snail shells, for example, have whorls which
grow steadily larger in regular progression from the innermost
to the outermost, and this is immediately perceptible. But the
whorls grow in several dimensions so that they continue to have
the same proportions. The windows in Ivar Bentsen's building,
on the other hand, increase only in one dimension and therefore
change successively from square to more than four times as high
as they are broad.

An American author, Colin Rowe, has compared a Palladio villa
with one of Le Corbusier’s houses and shown that there is a
remarkable similarity in their proportioning. It is an interesting
study because, besides the buildings themselves, we have both
the plans and the artists’ own reflections on architecture.

Palladio’s villa, Foscari, lies in Malcontenta on the mainland,
near Venice, and was built for a Venetian about 1560. By that
time Palladio had been to Rome where he had studied the great
ruins of antiquity and he now saw it as his mission to create
architecture that was just as sublime in composition and simple
in proportions. From the architectural world of pure harmonies
one should be able to experience Nature in all its phases.

The main story of the Villa Foscari is raised high above the
ground over a basement which resembles a broad, low pedestal.
From the garden, staircases on either side lead up to the free-
standing portico of the main floor. From here you enter the main
room of the villa, a great barrel-vaulted hall, cruciform in plan,
which runs through the entire building, affording a view of the
garden at the back and of the approach with its large, symmetri-
cally arranged avenues at the front. On either side of this central
hall lie three absolutely symmetrical lesser rooms. This was in
keeping with the Venetian custom of grouping the bedrooms and
living rooms round a large, airy hall in the central axis. But in-



110

Palladio:
Villa Foscari,
Malcontenta
near Venice.
Main entrance
Sfagade. The
fagade design
reflects the
interior
disposition

in which a
J’(!rgc‘ !Jﬂrr"l‘-
vaulted
central hall
rises to the
height of the
pediment.
The pediment
in front
corresponds
to the loggra
on the garden
farade shown
on the
apposite page

stead of the Venetian loggia, which is pushed back into the block
of the building, Palladio grafted a classic temple front onto the
fagade of the villa. Behind it, the house appears solid and monu-
mental, Above the basement the outer walls present a pattern of
large blocks in dimensions corresponding to the thickness of the
walls—both outer and inner. Within the house, too, you are
aware of the thickness of the walls that separate the rooms, each
of which has been given definitive and precise form. At either
end of the cross-arm of the central hall is a square room meas-
uring 16 x 16 feet. It lies between a larger and a smaller rect-
angular room, the one 12 x 16, the other 16 x 24 feet, or twice as
large. The smaller has its longer wall, the larger its shorter, in
common with the square room. Palladio placed great emphasis
on these simple ratios: 3:4, 4:4, 4:6, which are those found in
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Palladio:
Villa Foscari,
Malcontenta.
Garden front
with loggia
with enormous
columns
standing out
Sfrom the body
aof the
building

musical harmony. The width of the central hall is also based on
sixteen. Its length is less exact because the thickness of the walls
must be added to the simple dimensions of the rooms. The
special effect of the hall in this firmly interlocked composition is
produced by its great height, the barrel-vaulted ceiling towering
high above the side rooms into the mezzanine. But, you may ask,
does the visitor actually experience these proportions? The an-
swer is yes—not the exact measurements but the fundamental
idea behind them. You receive an impression of a noble, firmly
integrated composition in which each room presents an ideal
form within a greater whole. You also feel that the rooms are
related in size. Nothing is trivial—all is great and whole.

In Le Corbusier’s house in Garches, built for de Monzie in
1930, the main rooms are also raised above the ground but here
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Le Corbusier: Villa in Garches

the outer walls hide the pillars on which it stands. Colin Rowe
points out that these pillars form nodal points in a geometric net
which is divided in a system very similar to the one that could be
drawn of the Villa Foscari’s supporting walls. In width the pro-
portions in both cases are 2, 1, 2, 1, 2. But while Palladio used his
system to give the rooms fixed and immutable shapes and har-
monic interrelation in proportions, Le Corbusier has, if anything,
suppressed his supporting elements so that you are not aware of
them and have not the slightest feeling of any system in their
placement. That which is felt to form the fixed and immutable
system in the Garches house is the horizontal planes separating
the floors. The location of the vertical partitions is quite inci-
dental and, as already mentioned, the pillars are not noticed at
all. Le Corbusier himself has stressed the fact that the house is
divided in the ratio 5:8, that is, approximating the golden sec-
tion, but he has hidden it so well that probably no one who has
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Colin Rowe's comparison of proportions in villas
designed respectively by Le Corbusier and Palladio

seen the building had any inkling of it. There is no similarity in
the principles of composition in the two buildings. Palladio
worked with simple mathematical ratios corresponding to the
harmonic ratios of music and he probably never thought of the
golden section. Le Corbusier worked with rooms of widely
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Le Modulor, proportion study by Le Corbusier.
The man s 183 em tall and with raised arm
226 em. His height divided according to the
golden section gives 113 em corresponding to
navel height which is at the same time half of his
reaching height. To the right are two series of
measurements, one of the reaching height, the
other the man's height, divided up in diminishing

measturements according fo the golden section

different shapes in an asymmetrical whole and the location of his
important divisions was based on the golden section. Since then
Le Corbusier has gone much further in his cultivation of the
golden section. On the front of his famous residential unit in
Marseille he has placed a bas-relief of a male figure. This man
represents, he says, the essence of harmony. All scales in the
entire building are derived from the figure, which not only gives
the proportions of the human body but a number of smaller
measurements based on the golden section.

How he has arrived at these results makes interesting reading.
You feel that antiquity with its combination of religious mysti-
cism and artistic intuition lives on in this man who, for many
people, stands as the representative of rational clarity and mod-
ern thought. Originally Le Corbusier placed the average man’s
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height at 175 cm. This figure he divided according to the golden
section rule and got 108 cm. Like Leonardo da Vinci and other
Renaissance theorists he found that this corresponds to the height
from the floor to man’s navel. There was believed to be a deeper
meaning in the fact that man, the most perfect creation of Na-
ture, was proportioned according to this noble ratio and that,
furthermore, the point of intersection was neatly marked by a
little circle. Le Corbusier then divided his navel height in the
same way and continued with sub-divisions until he obtained
a whole harmonic series of diminishing measurements. He also
found—Ilikewise in accordance with the masters of the Renais-
sance—that man’s height with upraised arm was double the
navel height, i.e. 216 cm. It must be admitted that this measure-
ment seems of greater importance to the architect than navel
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height, which it is difficult to find any use for at all in architec-
ture. However, the awkward thing about the raised arm height
is that it does not form part of the newly established scale of
“beautiful” dimensions. But this did not deter Le Corbusier,
who used it as the starting point for a whole new series of golden
section measurements. In this way he obtained two sets of
figures to work with, which proved to be very fortunate.

But one day he learned that the average height of English
policemen was six feet, or about 183 cm, and as average height
is increasing the world over, he began to fear that the dimensions
of his houses would be too small if he utilized measurements
derived from the height of the average Frenchman. Therefore
he resolutely established 183 cm as the definitive quantity from
which all other measurements were to be derived. He then
worked out his two final series of figures which give a great many
variations, from very small up to the very largest. What he cannot
find in one he is almost sure to find in the other. But still you
would seek vainly for a measurement for anything so simple as
the height of a door or the length of a bed. Man’s height of 183
cm is too small; a door should preferably be somewhat higher
than the people who will go through it. And the raised arm
height of 226 cm, which Le Corbusier uses as the ceiling height
for the smallest rooms in the Marseille block, is too high for a door.
In a diagram he has shown how the various measurements,
from man’s height down, can be employed for different purposes
and functions, such as the high desk or platform, table heights,
various seat heights, etc. In other words, he has not followed the
scientific method of measuring things to determine the extreme
limits for their dimensions, but with the help of his two series
(in which only man’s height and upraised arm height have been
determined by measuring) he has arrived at two sets of measure-
ments which he believes in and which therefore must suit all
purposes. Even if you attached great wsthetic value to the pro-
portions of the golden section it still would not justify the
results because the measurements which follow each other in his

Le Corbusier: The Marseille block. Cross-section and plans of flats. Scale 1 :200

tables, and which will often be seen together, have not that ratio
(e.g. man’s height and upraised arm height). Le Corbusier him-
self feels that the two series are of great service to him. As pointed
out earlier, we are not spontaneously aware of simple proportions
in dimensions as we are of harmonic proportions in music. Le
Corbusier, therefore, corrects every one of the measurements that
he arrives at intuitively so that it will correspond to one or the




118

other Modulor measurement. And as he firmly believes that
“Le Modulor” satisfies both the demands of beauty—because it
is derived from the golden section—and functional demands.
Le Modulor is for him a universal instrument, easy to employ,
which can be used all over the world to obtain beauty and ra-
tionality in the proportions of everything produced by man.,

Let us examine how he himself has employed his Modulor in
the Marseille block. This building is entirely different from his
earlier works. While they were to be regarded as architecture
based on the principles of Cubist painting, his later work is more
like gigantic sculpture. The buildings are still raised above the
ground but now on enormous substructures. The residential
unit in Marseille is like a mammoth box placed on an enormous
trestle. The box is divided into innumerable small cells—the
apartments, consisting of small rooms with ceiling heights cor-
responding to the Modulor’s raised arm height of 226 cm, and
larger living rooms of double that height. The built-in equipment
has been dimensioned in accordance with the Modulor rules.
Here, the method of proportioning derived from human meas-
urements was to stand the test of practical application. The
result, however, does not carry conviction. T'o keep costs within
a reasonable limit the rooms were made as narrow and deep as
possible. The smaller rooms have not only extraordinarily low
ceilings but are of minimal width and inordinate depth. The
depth does not give the impression of having been arrived at by
proportioning work. And in relation to it, the large room is not
as large as it should be to give a sense of spaciousness in the
otherwise cramped conditions.

Nevertheless the building makes a strong impression on the
visitor. When you have gone through it, walked about among its
gigantic pillars, gone up to the roof and seen the weird landscape
of enormous chimneys and other large cast concrete features
arranged effectively in relation to the surroundings, ordinary
buildings seem strangely petty in comparison. There are several
other high apartment buildings in Marseille but not only are they

The colossal underpinning of Le Corbusier’s Marseille block, four men high
See also illustrations page 172

slicker in detail, they seem to be composed simply of innumer-
able small details added together while Le Corbusier’s house has
real greatness. Why is this so?

Above all, it is due to the fact that the understructure was
not proportioned according to human measurements—that is in
relation to the small apartments—but on a gigantic scale; a fitting
substructure for a mammoth box. When you stand down there
among these fantastic pillars you are made vividly aware that
they were created to support a gigantic building.

Here you find something of the grandeur of Palladio’s archi-
tecture. In the villa in Malcontenta the old wall decorations still
exist and in one of the square rooms the frescoes depict titanic
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120 figures in various attitudes. You feel that the house was origi-

nally built for such giants and that later ordinary people moved
in with their household goods, which seem rather lost in the
vaulted stone rooms.

In reality, the ratios of Palladio’s villa were derived from
the classical columns he used. The columns, taken over from
antiquity, were regarded as perfect expressions of beauty and
harmony. There were rules for their proportioning down to
the smallest details. The basic unit was the diameter of the
column and from that were derived the dimensions not only of
shaft, base and capital but also of all the details of the entabla-
ture above the columns and the distances between them. These
ratios were laid down and illustrated in handy pattern-books of
the “five orders.” Where small columns were used everything
was correspondingly small; when the columns were large, every-
thing else was large too. During the early Renaissance buildings
were constructed in layers with a new set of columns and entabla-
tures for each story. But Michelangelo and Palladio introduced
columns in “large orders” comprising several stories, and from
then on there was no limit to how large they could be made or
how monumental the buildings. Instead of a small cornice cor-
responding to the proportions in one story, there now came huge
crowning cornices proportioned in relation to the entire building,
like the top and bottom parts of Le Corbusier’s Marseille block.
The pilgrim who came to S. Peter’s in Rome must have felt like
Gulliver in the land of the giants. Everything was in harmony
but adapted to ultralarge columns.

From then on there was an essential difference between the
proportioning of monumental architecture and that of domestic
buildings. The monumental edifice became even more effective
when it was placed in a row of ordinary structures, as Italian
churches often were during the Baroque period. The domestic
buildings also had their definite rules of proportioning but they
were less elastic, not based on column modules but on human
dimensions, determined in a purely practical manner.

When we consider how a building is produced we realize that
it is fairly necessary to work with standard units. The timber
which the carpenter prepares in his lumberyard must fit the
brickwork which the mason has built up on the site. The stone-
cutter’s work, which may have been carried out in a distant

Church of San Giorgio Maggiore in Venice, by Palladio .
When the colossal columns are seen together with the more normal-sized side-buildings it
becomes apparent how immense the church is

quarry, must square with all the rest when it arrives. Windows
and doors must be easy to order so that they will exactly fit the
openings that have been prepared for them. ) '
The very designation of the most common measuring unit
employed in the past—and still used in Great Britain and Amer-
ica—the foot, refers to part of the human body. We also speak
of measuring by rule of thumb, the thumb being taken as equal
to one inch. A foot can be divided by eye into two, three, four,
six, or twelve parts, and these easily gauged divisions are desig-
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nated by simple numbers in inches. Earlier, there were standard
specifications for bricks, timber, distances between beams and
rafters in a house, windows and doors—all expressed in simple
numbers in feet and inches. And they all fitted together without
requiring any further adjustment at the building site. In Den-
mark half-timber construction particularly had attained a high
degree of standardization though it varied in different parts of
the country. In some provinces bays were five feet wide, in
others six. Each half-timber bay comprised a window, a door,
or a section of solid wall. In the stable the width of a bay cor-
responded to a stall; in the house to the narrowest room—
either a pantry or a corridor. Two bays equalled an ordinary
room, three the “best room.” Heights were also standardized
and in some provinces all roofs had the same pitch. In other
countries with other methods of construction there were other
subdivisions. In England, for instance, they built two-story
dwellings for farm-workers in rows, on the beam-ridge principle,
with one supporting wall to each house. The subdivision here
was in houses—of sixteen feet each—instead of in bays.

In the Baroque period it was not only churches that were built
on a monumental scale; palaces too were often given gigantic
dimensions. The columns and pilasters of exterior architecture
now entered the rooms and dominated them. We are generally
told that these palaces were built on such a huge scale to gratify
the vanity of princes. Actually, the grandiose dimensions were
taken over from classical structures which all architects of that
period strove to imitate, and the palaces were neither comfortable
nor easy to live in. But with the Rococo period the small room
came into its own. Even for official residences the proportioning
principles of domestic architecture were employed and in castles
and palaces privacy and comfort were now preferred to pageantry
and splendor.

Frederik’s Hospital in Copenhagen (now Museum of Decora-
tive Art), built by the great Danish architect Nicolai Eigtved
about 1750, is a good example of how realistically the architect

Kaare Klint's proportion study of the rooms in Frederik's Hospital, Copenhagen
To the right, beds measuring 3% 6 feet and with 6-foot spaces between them

could approach his problem—and of the good result obtained
thereby. The entire design, as was only natural, was based on
the wards, which were formed as long galleries. Their dimen-
sions were determined by the basic element of a hospital ward:
the bed. This was placed at 6 x 3 feet. The beds were to stand
with the head-ends against a wall so that it would be possible
to approach them from either side and from the foot with one
row standing out from the window wall and one from the opposite
wall. There was to be six feet between beds in both directions.
This gave a room depth of eighteen feet (a bed plus a passage
space plus a bed) and a distance of nine feet from bed center to
bed center. At every other intervening space a window was
placed so that the distance from window center to window center
was eighteen feet, i.e. equal to the depth of the room.

In this building, as we see, the dimensions were not deter-
mined by columns, or golden sections, or any other “beautiful”
proportions, but by the beds which the hospital was built to hold.

This is only one example of the way Eigtved worked. In the
course of four years—from 1750 until his death in 1754—he
drew up the plans for an entire neighborhood, the Amaliegade
district where now the Royal Family lives. He subdivided the
ground, made model drawings for individual houses, designed



124  the four Amalienborg Palaces and built Frederik’s Hospital. He

also made arrangements for all other buildings in the new district
so that, when completed, the streets, squares and buildings
would form a well integrated composition. This was possible
only because he, as the architect who held the whole thing in his
grasp, worked with proportions he was entirely familiar with and
related them to each other in such a simple manner that he could
see it all very clearly in his mind’s eye.

Here, comparison of the architect with the composer is com-
pletely justified—the composer who must be able to put his
composite work into notes by means of which others will be able
to perform his music. He can do this because the tones that are
available have been firmly established and each note corresponds
to a tone with which he is completely familiar.

By a happy accident in the twentieth century Kaare Klint was
chosen to restore the hospital building designed by Eigtved in
the eighteenth. Earlier, Klint had made exhaustive studies of the
dimensions of all sorts of domestic articles as a basis for general
architectural proportioning. In his work on the hospital he dis-
covered that when the buildings were measured in meters and
centimeters it was impossible to find any coherent system in
their proportioning. But measured in feet and inches the whole
thing became lucid and simple. In his earlier studies he had
found that many of the things we use in daily life were already
standardized without our being aware of it. These included bed
sheets, table cloths, napkins, plates, glasses, forks, spoons, etc.
You can design a new pattern for the handles of spoons but a
tablespoonful and a teaspoonful must remain an invariable quan-
tity as long as liquid medicine is given in spoonfuls. Not only
were the dimensions standardized but in feet and inches they
could be expressed in integral numbers. Many kinds of furniture,
too, have standard dimensions based on the proportions of the
human body—such as seat heights and the heights of tables
for various purposes, etc. Klint was not trying to find a magic
formula that would solve all problems; his only desire was to
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Kaare Klint: Proportion studies for factory-made furniture, 1918

determine, by scientific method, the natural dimens;(:ns of aer;
chitecture and to find out how they could be made to 'am(llor; .
with each other again—not acco:;i.ing Ito&any liredetermme r:
imple division with nothing left ove . |
bu:-\: };::;;pas 1918 he designed a whole series of conuner:(;zl
furniture adapted to human mcas.urements. and humz;ln ne 1‘::
and until his death in 1954 he continued to improve an ;upal:n ;
ment it. Today many other designers are wo‘rkmg alor:lg the sti
lines. In a world in which mass-production is such a ogunali :ﬁ
factor it is absolutely necessary to woFk out standsfrds_ asle n
human proportions. But this is noth'mg new. It is hasnnp fe i
further development of the proportioning rules that we

i i days.
universally accepted in older . 4
In other words, architecture has its own, natural methods o

proportioning and it is a mistake to believe that proportions in
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the visu.al world can be experienced in the same way as the
harmonic proportions of music. For individual objects, such as
rfuatch bolxes, experience has shown that there are certair: propor-
tions v.‘rhlch appeal to many people for that particular purpose
But this does not mean that there are certain proportions whic};
are the only right ones for architecture. In the Gothic cathedral
a breath-taking effect was obtained by bays that were man

times higher than they were broad, dimensions which probably
no one would find attractive in a single section of wall. But whci
such abnormally elongated bays are joined together in the right
way the rtfsult, as shown in the illustration on page 140, may
convey an impression of musical harmony to the beholder—not

however, of musical tones but of the regularity which we cali

rhythm and which we shall investigate in the following chapter.

CHAPTER VI

Rhythm in Architecture

The photograph of the swallows on the wires makes a charming
picture with its combination of life and geometry. It is a simple
composition of four parallel lines on which a number of birds are
perched against a white ground. But within the rigid rectilinear
pattern the continuous flashing and fluttering of the birds are
variations on a theme which give a completely cinematographic
impression of the little fAock in vivacious activity. You can almost
hear their joyful chirps.

In the world of architecture you can also experience delightful
examples of subtle variation within strict regularity. It may be a
row of houses in an old street where dwellings of the same type
and period were built individually within the framework of 2
general plan. These houses, too, are variations on a theme within
a rectilinear pattern.




Kimberly Elam. Geometry of Design.

Cognitive Proportion Preferences

Within the context of the man-made environment
and the natural world there is a documented human
cognitive preference for golden section proportions
throughout recorded history. Some of the earliest evi-
dence of the use of the golden section rectangle,
with a proportion of 1:1.618, is documented in the
architecture of Stonehenge built in the twentieth to
sixteenth centuries, B.C. Further documented evi-
dence is found in the writing, art, and architecture of
the ancient Greeks in the fifth century, B.C.. Later,

Renaissance artists and architects also studied, doc-
umented, and employed golden section proportions
in remarkable works of sculpture, painting, and archi-
tecture. In addition to man-made works, golden sec-
tion proportions can also be found in the natural
waorld through human proportions and the growth
patterns of many living plants, animals, and insects,

Curious about the golden section a German psychol-
ogist, Gustav Fechner, late in the late nineteenth cen-

Table of R, le Proportion Pref
Ratio:
Width/Length | Most Preferred Rectangle Least Preferred Rectangle
% Fechner % Lalo % Fechner % Lalo
11 3.0 1.7 218 225 square
5:6 02 1.0 18.7 16.6
45 2.0 1.3 9.4 9.1
34 2.5 95 25 93
710 1.7 5.6 12 25
23 206 11.0 0.4 0.6
5:8 35.0 303 0.0 0.0 Golden Section Proportion
13:23 20.0 6.3 0.8 0.6
1:2 15 B0 25 125 double square
25 15 15.3 357 26.6
Totals: 100.0 100.0 100.0 100.1

square

710

13
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tury, investigated the human response to the special
aesthetic qualities of the golden section rectangle.
Fechner's curiosity was due to the documented evi-
dence of a cross-cultural archetypal aesthetic prefer-
ence for golden section proportions.

Fechner limited his experiment to the man-made
world and began by taking the measurements of
thousands of rectangular objects, such as books,
boxes, buildings, matchbooks, newspapers, etc. He

Comparison Graph of Rectangle Preference

Fechner’s Graph of Best Rectangle Preference, 1876 @
Lalo’s Graph, 1908 B

found that the average rectangle ratio was close to a
ratio known as the golden section, 1:1.618, and that
the majority of people prefer a rectangle whose pro-
portions are close to the golden section. Fechner's
thorough yet casual experiments were repeated later
in a more scientific manner by Lalo in 1908 and still
later by others, and the results were remarkably similar.

50%
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25%

N
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square

5:8
golden section

2:3 5:8
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double
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1:2
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Proportion and Nature

"The power of the golden section to create harmony
arises from its unique capacity to unite different
parts of a whole so that each preserves its own iden-
tity, and yet blends into the greater pattern of a sin-
gle whole."”

Gyargy Doczi, The Power of Limits, 1994

Golden section preferences are not limited to human
aesthetics but are also a part of the remarkable rela-

Atlantic Sundial Shell
Spiral growth pattern.

tionships between the proportions of patterns of
growth in living things such as plants and animals.

The contour spiral shapes of shells reveal a cumulative
pattern of growth and these growth patterns have
been the subject of many scientific and artistic studies.
The growth patterns of shells are logarithmic spirals of
golden section proportions, and what is known as the
theory of a perfect growth pattern. Theodore Andreas

Golden Section Spiral
Construction diagram of
the golden section rectan-
gle and resulting spiral.

Chambered Nautilus
Cross section of the Nautilus’
spiral growth pattern.

Moon Snail Shell
Spiral growth pattern.



Cook in his book The Curves of Life describes these
growth patterns as “the essential processes of life...."”
In each growth phase characterized by a spiral, the new
spiral is very close to the proportion of a golden section
sguare larger than the previous one. The growth pat-
terns of the nautilus and other shells are never exact
golden section proportions, Rather, there is an attempt
in biological growth pattern proportion to approach but
never reach exact golden spiral proportions.

Comparison of Tibia Shell Spiral
Growth Pattern and Golden Section
Proportion

Pentagon Pattern

The pentagon and star
pentagram have golden
section proportions, as the
ratios of the sides of the
triangles in a star penta-
gram is 1:1.618. The same
pentagon/pentagram rela-
tionships can be found in
the sand dollar and in
snowflakes.

The pentagon and pentagram star also share golden
section proportions and can be found in many living
things such as the sand dollar. The interior subdivi-
sions of a pentagon create a star pentagram, and the
ratio of any two lines within a star pentagram is the
golden section proportion of 1:1.618.




The spiral growth patterns of the pine cone and
the sunflower share similar growth patterns. The
seeds of each grow along two intersecting spirals
which move in opposite directions, and each seed
belongs to both sets of intersecting spirals. Upon
examining the pine cone seed spirals, 8 of the spi-
rals move in a clockwise direction and 13 in a
counterclockwise direction, closely approximating
golden section proportions. In the case of the sun-
flower spirals there are 21 clockwise spirals and 34

Spiral Growth Patterns
of Sunflowers

Similar to the pine cone
each seed in the sunflower
belongs to both sets of
spirals. 21 spirals move
clockwise, and 34 spirals
move counterclockwise.
The proportion of 21:34 is
1:1.619 which is very close
to the golden section
proportion of 1:1.618

counter clockwise spirals, which again approxi-
mate golden section proportions.

The numbers 8 and 13 as found in the pine cone
spiral and 21 and 34 as found in the sunflower spi-
ral are very familiar to mathematicians. They are
adjacent pairs in the mathematical sequence
called the Fibonacci sequence. Each number in
the sequence is determined by adding together
the previous two: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Spiral Growth Patterns of
Pine Cones

Each seed in the pine cone
belongs to both sets of
spirals. B of the spirals move
clockwise and 13 of the
spirals move counterclock-
wise. The proportion of 8;13
is 1:1.625 which is very close
to the golden section
proportion of 1:1.618



55.... The ratio of adjacent numbers in the
sequence progressively approaches golden sec-
tion proportions of 1:1.618.

Many fish also share relationships with the golden
section. Three golden section construction dia-
grams placed on the body of the rainbow trout
show the relationships of the eye and the tail fin
in the reciprocal golden rectangles and sqguare.
Further, the individual fins also have a golden sec-

reciprocal golden section r
|

tion proportions, The blue angle tropical fish fits
perfectly into a golden section rectangle and the
mouth and gills are on the reciprocal golden sec-
tion point of the body's height.

Perhaps a part of our human fascination with the
natural environment and living things such as
shells, flowers, and fish is due to our subcon-
scious preference for golden section proportions,
shapes, and patterns.

o

golden section rectangle

Golden Section Analysis
of a Trout

The body of the trout is
enclosed by three golden
section rectangles. The
eye is at the level of the
reciprocal golden rectangle
and the tail fin is defined
by a reciprocal golden
rectangle.

Golden Section Analysis
of a Blue Angle Fish

The entire body of the fish
fits into a golden section
rectangle. The mouth and
gill position is at the
reciprocal golden section
rectangle.

golden section rectangle

golden section rectangle




Human Body Proportions in Classical Sculpture

Just as many plants and animals share golden section
proportions, humans do as well. Perhaps another rea-
son for the cognitive preference for golden section
proportions is that the human face and body share
the similar mathematical proportional relationships
found in all living things.

Some of the earliest surviving written investigations
into human proportion and architecture are in the
writings of the ancient Greek scholar and architect

Golden Section Proportions of Greek Sculpture
Doryphoros, the Spear Bearer (left). Statue of Zeus from
Cape Artemision (right). Each golden section rectangle is
represented by a rectangle with a dashed diagonal line.
Multiple golden section rectangles share the dashed
diagonal. The proportions of the two figures are almost
identical.

Marcus Vitruvius Pollio, who is widely referred to as
Vitruvius. Vitruvius advised that the architecture of
temples should be based on the likeness of the per-
fectly proportioned human body where a harmony
exists among all parts. Vitruvius described this pro-
portion and explained that the height of a well pro-
portioned man is equal to the length of his out-
stretched arms. The body height and length of the
outstretched arms create a square that enclose the
human body, while the hands and feet touch a circle




e

with the navel as the center. Within this system the
human form is divided in half at the groin, and by the
golden section at the navel. The statues of the Spear
Bearer and Zeus are both from the fifth century B.C.
Although created by different sculptors, the propor-
tions of the Spear Bearer and Zeus are both clearly
based on the canon of Vitruvius and the analysis of
the proportions used is almost identical.

D

e

iR )

Zeus Analyzed According to the Vitruvius’ Canon

A square encloses the body while the hands and feet
touch a circle with the navel as center. The figure is
divided in half at the groin, and (far right) by the golden
section at the navel.



Architectural Proportions

In addition to documenting human body proportions
Vitruvius was also an architect and documented har-
monious architectural proportions. He advocated that
the architecture of temples should be based on the
perfectly proportioned human body where there
exists a harmony between all parts. He is credited
with introducing the concept of the module, in the
same way as the human proportions were expressed
in @ module representing the length of the head or
feet, This concept became an important idea through-
out the history of architecture.

The Parthenon in Athens is an example of the Greek
system of proportioning. In a simple analysis the
fagade of the parthenon is embraced by a subdivided
golden rectangle. A reciprocal rectangle forms the
height of the architrave, frieze, and pediment. The
square of the main rectangle gives the height of the
pediment, and the smallest rectangle in the diagram
yields the placement of the frieze and architrave.

Centuries later the "divine proportion,” or golden sec-
tion, was consciously employed in the architecture of

Drawing of the Parthenon, Athens, ca.
447-432 B.C., and the Architectural
Relationship to the Golden Section
Analysis of golden section proportions
according to the golden section construction

diagram.

Golden Section Harmonic Analysis
Analysis of golden section proportions
according to a diagram of a harmonic
analysis of the golden section.

3

RS




Gothic cathedrals. In Towards A New Architecture, Le
Corbusier cites the role of the square and the circle in
the proportions of the facade of the Cathedral of
Notre Dame, Paris. The rectangle around the cathe-
dral fagade is in golden section proportion. The
square of this golden section rectangle encloses the
major portion of the facade, and the reciprocal golden
section rectangle encloses the two towers. The reg-
ulating lines are the diagonals that meet just above
the clerestory window, crossing the corners of the
major variations in the surface of the cathedral. The

center front doorway is also in golden section pro-
portion as shown by the construction diagram. The
proportion of the clerestory window is one-fourth the
diameter of the circle inscribed in the square.

Notre Dame Cathedral, P
Paris, 1163 -1235 = >

Analysis of proportions and

regulating lines according to
the golden section rectangle.
The entire fagade is in golden
rectangle proportion. The
lower portion of the fagade is
enclosed by the square of the
golden rectangle and the towers
are enclosed by the reciprocal
golden section rectangle.
Further, the lower portion of
the fagade can be divided into
six units, each another golden
rectangle.

Proportion Comparison

The clerestory window is in
proportion of 1:4 to the major
circle of the fagade.
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Le Corbusier's Regulating Lines

Le Corbusier

Towards a New Architecture, 1931
“An inevitable element of Architecture. The necessity
for order. The regulating line is a guarantee against
willfulness. It brings satisfaction to the understanding.
The regulating line is a means to an end; it is not a
recipe. Its choice and the modalities of expression
given to it are an integral part of architectural creation”

Corbusier's interest in the application of the geome-
try of structure and mathematics is recorded in his
book Towards a New Architecture. Here he discuss-
es the need for regulating lines as a means to create
order and beauty in architecture and answers the crit-
icism, "With your regulating lines you kill imagina-
tion, you make a god of a recipe.” He responds, "But
the past has left us proofs, iconographical docu-
ments, eteles, slabs, incised stones, parchments,
manuscripts, printed matter.... Even the earliest and

—E=
Redrawn from the Marble Slab Found in 1882, Facade
of the Arsenal of the Piraes. Le Corbusier, Towards a
New Architecture, 1931
Corbusier cites the regulated lines of simple divisions
that determine the proportion of the height to the width,
and guide the placement of the doors and their propor-
tion to the facade. The facade fits into a golden section
rectangle and the placement and height of the doorway
corresponds to that proportion.



most primitive architect developed the use of a regu-
lating unit of measure such as a hand, or foot, or fore-
arm in order to systemize and bring order to the task.
At the same time the proportions of the structure cor-
responded to human scale.”

Corbusier discusses the regulating line as “...one of
the decisive moments of inspiration, it is one of the
vital operations of architecture.” Later, in 1942, Le
Corbusier published The Modulor: A Harmonious

Measure to the Human Scale Universally Applicable
to Architecture and Mechanics. The Modulor chroni-
cled his proportioning system on the mathematics of
the golden section and the proportion of the human
body.

Le Corbusier, 1916. A Villa, From
Towards a New Architecture, 1931
(above) This drawing by Le Corbusier
diagrams the series of regulating lines
that were used in the building design.
Red lines placed on top of the drawing
show the golden section rectangle and
construction diagonals.

Golden Section Construction (right) ~.

The relationship of Corbusier's regulating ey
lines to the two construction diagrams of Tk
the golden section rectangle. 4
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Construction of the Golden Section Rectangle

The golden section rectangle is a ratio of the Divine
Proportion. The Divine Proportion is derived from the
division of a line segment into two segments such
that the ratio of the whole segment, AB, to the longer
part, AC, is the same as the ratio of the longer part,
AC, to the shorter part, CB. This gives a ratio of
approximately 1.61803 to 1, which can also be
expressed l’g_‘—'ﬁ

Golden Section, Square Construction
Method
1. Begin with a square.

2. Draw a diagonal from the midpoint A
of one of the sides to an opposite corner
B. This diagonal becomes the radius of an
arc that extends beyond the square to C.
The smaller rectangle and the square
become a golden section rectangle.

3. The golden section rectangle can be
subdivided. When subdivided the rectangle
produces a smaller proportional golden
section rectangle which is the reciprocal,
and a square area remains after subdivi-
sion. This square area can also be called
a gnomon.

4. The process of subdivision can endlessly
continue, again and again, producing
smaller proportional rectangles and squares.

The Divine Proportion:

A c
[ — t
AB = AC
AC CB
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The golden section rectangle is unique in that when
subdivided its reciprocal is a smaller proportional rec-
tangle and the area remaining after subdivision is a
square. Because of the special property of subdividing
into a reciprocal rectangle and a square, the golden
section rectangle is known as the whirling square rec-
tangle. The proportionally decreasing squares can pro-
duce a spiral by using a radius the length of the sides
of the square.

Golden Section Spiral Construction
By using the golden section subdivision
diagram a golden section spiral can be
constructed. Use the length of the sides
of the squares of the subdivisions as a
radius of a circle. Strike and connect arcs
for each square in the diagram.

Proportional Squares

The squares from the golden section
subdivision diagram are in golden
section proportion to each other.

=1




Golden Section Proportions

The divisions and proportion of the triangle method of
the golden section construction produce the sides of
a golden section rectangle, and in addition, the
method can produce a series of circles or squares
that are in golden section proportion to sach other as
in the examples below.

Diameter AB = BC + CD
Diameter BC = CD + DE
Diameter CD = DE + EF

etc.

1l

Golden Golden
Rectangle + Square = Rectangle
A + B = AB

AB + C = ABC

ABC + D = ABCD
ABCD + E = ABCDE
ABCDE + F ABCDEF
ABCDEF + G = ABCDEFG
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Golden Section and the Fibonacci Sequence

The special proportioning properties of the golden
section have a close relationship to a sequence of
numbers called the Fibonacci sequence, named for
Leonardo of Pisa who introduced it to Europe about
eight hundred years ago along with the decimal sys-
tem. This sequence of numbers, 1, 1, 2, 3, 5, 8, 13,
21, 34... is calculated by adding the two previous
numbers to produce the third. For example, 1+1=2,

Fibonacci Number Sequence

1+2=3, 2+3=5 etc. The proportioning pattern of this
system is very close to the proportioning system of
the golden section. The early numbers in the
seguence begin to approach the golden section, and
any number beyond the fifteenth number in the
seguence that is divided by the following number
approximates 0.618, and any number divided by the
previous number approximates 1.618,

1. 1 2, 3. 5 8, 13 21 34 55 89 etc
1+1=2, I
1+42=3, I
2+3=5,
3+5=3g,
5+8=13,
B8+13=21,
13+21=34,
21+34=55
34+55=39
2/ = 2.0000
3/2 = 1.5000
5/3 = 1.66666
85 = 1.60000
13/8 = 1.62500
212 = 161538
31 = 161904
55/34 = 161764
8955 = 161818
144/89 = 1.61797
233/144 = 1.61805
8771233 = 1.61802

610/377 = 1.61803 Golden Section
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Golden Section Dynamic Rectangles

All rectangles can be divided into two categories: stat-
ic rectangles with ratios of rational fractions such as
1/2, 2/3, 3/3, 3/4, etc., and dynamic rectangles with
ratios of irrational fractions such as V2, V3, V5, ¢
(golden section), etc. Static rectangles do not produce
a series of visually pleasing ratios of surfaces when
subdivided. The subdivisions are anticipated and reg-
ular without much variation. However, dynamic rec-
tangles produce an endless amount of visually pleas-

ing harmonic subdivisions and surface ratios when
subdivided, because their ratios consist of irrational
numbers.

The process of subdividing a dynamic rectangle into
a series of harmonic subdivisions is very simple.
Diagonals are struck from opposite corners and then
a network of parallel and perpendicular lines are con-
structed to the sides and diagonals.

Golden Section Dynamic
Rectangles

These diagrams from The
Geometry of Art and Life,
illustrate a range of har-
monic subdivisions of

golden section rectangles.
The small red line rectan-
gles (left) show the golden
section rectangle construc-

tion. The gray and red =
rectangles (middle) show o \_ =

the red golden section ; : /.‘_‘U /,
rectangle construction with = > 7 =1
the harmonic subdivisions /Tx A X

in gray line. The black line
rectangles (right) show only
the harmonic subdivisions.
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