SKILL LEVEL : ADVANCED

A quadcopter is a flying machine with four propellers
controlled either autonomously (programmed with a
fixed flight routine) or via a remote control.

This first article (hopefully of a series) covers a brief
overview of how they work, how to build one
controlled by a Raspberry Pi, information about
where to get all the bits you need and how to bolt
them all together physically, electronically and in
software. The result should be a quadcopter which
can take-off, hover and land autonomously (and with
care!)

Future articles will cover more details on testing and
tuning this basic quad including code enhancements
to allow lateral movement, a Raspberry Pi remote
control, and perhaps future developments covering
GPS tracking.

Parts of a quadcopter

First a quick breakdown of all the parts that make up
a quadcopter.

There are four propeller blades. Two of the four are
designed to rotate clock-wise; the other two anti-
clockwise. Blades which are designed to move the
same way are placed diagonally opposite on the
frame. Organising the blades like this helps stop the
quadcopter spinning in the air. By applying different

Building an airborne autobot

Andy Baker

Guest Writer

power to each propeller, and hence different amounts
of lift to corners of the quadcopter, it is possible to not
only get a quadcopter to take-off, hover and land but
also by tilting it, move horizontally and turn corners.

Each propeller has its own DC brushless motor.
These motors can be wired to rotate clockwise or
anti-clockwise to match the propeller connected to
them. The motor has coils in three groups around the
body (called the stator) and groups of magnets
attached to the propellor shaft (called the rotor). To
move the blades, power is applied to one group of the
coils and the rotor magnets are attracted to that coil,
moving round. If that coil is then turned off and the
next one powered up, the rotor moves around to the
next coil. Repeating this around the three coils in
sequence results in the motor rototating; the faster
you swap between the three powered coils the faster
the motor rotates. This makes the motor suitable for
‘digital’ control - the direction and speed of
movement of the propeller blade exactly matches the
sequence and rate power pulses are applied to the
coils. These motors take a lot of power to spin the
propeller blades fast enough to force enough air
down to make the quadcopter take-off - far more
power than a Raspberry Pi can provide - so an
Electronic Speed Controller (ESC) bridges that gap.
It translates between a Pulse Width Modulation
(PWM) control signal from the Raspberry Pi and
converts it to three high-current signals, one for each



coil of the motors. They are the small white objects
velcro’d under the arms of the quadcopter.

Next there are sensors attached to the breadboard on
the shelf below the Raspberry Pi; these provide
information to the Raspberry Pi about rocking and
rolling in three dimensions from a gyroscope, plus
information about acceleration forward, backwards,
left, right, up and down. The sensors connect to the
Raspberry Pi GPIO I2C pins.

In the circuit diagram you can see | am considering
adding a beeper, so | can hear what the quadcopter
thinks it's doing.

L-ABL00T-RC

PRO SIGNA
—

@
2

ESC2 ESC3
4 1

ESC1 Fromt Left Front Rignd Esc4
1 1

The power for everything comes from a single lithium
polymer (LiPo) battery which provides 11.1V up to a
peak current of 100A, with the full-charge of 3300
mAh thus supplying 3.3A for an hour or 100A for two
minutes or anywhere in between. This is a powerful
and dangerous beast, yet it only weighs 250 grams.
It requires a special charger - if not used, a LiPo
battery can easily become a LiPo bomb - beware.
There is a regulator on the breadboard to take power
from the battery and produce the 5V for the
Raspberry Pi and also provide a degree of protection
from the vast power surges the motors draw from the
battery.

That just leaves the beating heart of the quadcopter
itself; the Raspberry Pi. Using Python code it reads
the sensors, compares them to a desired action (for
example take-off, hover, land) set either in code or
from a remote control, converts the difference
between what the quad is doing (from the sensors)
and what it should be doing (from the code or remote
control) and changes the power to each of the
motors individually so that the desired action and
sensor outputs match.

Creating your quadcopter

First and foremost, flying machines and boats are
female and they have names; mine is called Phoebe
(“Fee-Bee”). Choose a name for yours and treat her
well, and the chances are she’ll reciprocate!

Phoebe’s body, arms, legs, blades, motors, ESCs
and batteries are from kits. Total cost is about £250
- together with a Raspberry Pi, and other
accoutrements, the total cost is perhaps £300 -
£350. Not cheap for something which certainly at the
start has a preference to crash rather than fly!

A complete bill of materials (BOM) is available at
http://blog.pistuffing.co.uk/?p=1143

I've actually upgraded my motors to higher power,
lighter weight varieties but this is absolutely not
necessary - the equipment provided by the kits is
excellent. Upgrading components for weight
reduction / power efficiency and strength is definitely
an afterthought once the basics are working.

The Raspberry Pi is a model A, chosen for lower
weight and lower power consumption; these are
factors reflected through other pieces of the design. |
have removed the audio and video outputs and use a
micro-SD card adapter from the guys at Pimoroni - all
in the name of weight saving.

The Raspberry Pi case is a variant of the Pimoroni
PiBow model B case with a couple of levels removed
and some holes sealed for reduced weight and
increased strength (protection from crashes!). [I've
posted the design for these at
http://blog.pistuffing.co.uk/wp-content/uploads/2013/

10/Pibow002-AB5.pdf. Phenoptix do a great job of
laser cutting 3mm acrylic at a very reasonable price.



Talking to Phoebe

Whether Phoebe is autonomous or remote controlled
someone needs to talk to her to tell her what to do.
To that end, Phoebe runs a wireless access point
(WAP) so another computer can join her private
network and either SSH in or provide remote control
commands. You can see how | did this at
http://blog.pistuffing.co.uk/?p=594.

For initial testing the WAP function isn’t necessary,
any household wireless network will do, but as your
quadcopter comes to life you will want to be doing
your testing away from animals, children and other
valuables you don’t want damaged (like yourself).
Having a WAP means you can take the testing out
into the garden or local park or field.

Presenting Phoebe’s Python code

The final step is obviously the most important; once
you have a physical quadcopter with associated
blades, motors, ESCs, power and circuitry, we use
Python code to glue all the pieces together. I’'m not
going to go into this blow by blow here as the code is
available at https://github.com/PiStuffing/Quadcopter
and it should be self-documenting. There are more
lines of explanatory comments than there are lines of
code actually doing something constructive!

The [2C class provides a programming interface to
read and write data from the sensors. Built on that,
the MPUB050 class configures the sensors and then
provides APl access to reading the data and
converting the values from the sensor into meaningful
values humans would understand (like degrees/sec
for rotation or metres/sec? for acceleration).

The QUADBLADE class handles the PWM for each
blade handling initialization and setting the PWM data
to control the propeller blade spin speeds. The PID
class is the jigsaw glue and the core of the
development and testing. It is the understanding of
this which makes configuring a quadcopter both
exciting and scary! It is worth an article in its own
right - for now there is a brief overview of what they
do and how at the end.

There are utility functions for processing the startup
command line parameters, signal handling (the panic
button Ctrl-C) and some shutdown code.

Last, but not least, there is the big “while
keep_looping:” loop which checks on what it should
be doing (take-off, hover, land, etc), reads the
sensors, runs the PIDs, updates the PWMs and
returns to the start one hundred times a second!

PID

The PID (Proportional, Integral, Differential) class is a
relatively small, simple piece of code used to achieve
quite a complex task. It is fed a “target” value and an
“input” value. The difference between these is the
“error”. The PID processes this “error” and produces
an “output” which aims to shrink the difference
between the “target” and “input” to zero. It does this
repeatedly, constantly updating the “output”, yet
without any idea of what “input”, “output” or “target”
actually mean in its real world context as the core of a
quadcopter: weight, gravity, wind strength, RC
commands, location, momentum, speed and all the
other factors which are critical to quadcopters.

In the context of a quadcopter, “target” is a flight
command (hover, take-off, land, move forwards),
“input” is sensor data and “output” is the PWM pulse
size for the motors.

Phoebe has 4 PIDs running currently - pitch, roll, yaw
and vertical speed - these are the bare minimum
needed for an orderly takeoff, hover and landing.

The PID's magic is that it does not contain any
complex calculations connecting power, weight,
blade spin rates, gravity, wind-speed, imbalanced
frame, poor center of gravity or the many other



factors that perturb the perfect flight modelled by a
pure mathematical equation. Instead it does this by
repeated, rapid re-estimation of what the current best
guess “output” must be based only on the “target”
and the “input”.

The “P” of PID stands for proportional - each time the
PID is called its “output” is just some factor times the
“error” - in a quadcopter context, this corrects
immediate problems and is the direct approach to
keeping the absolute “error” to zero.

The “I” of PID stands for integral - each time the PID
is called the “error” is added to a grand total of errors
to produce an output with the intent that over time,
the total “error” remains at zero - in a quadcopter
context, this aims to produce long term stability by
dealing with problems like imbalance in the physical
frame, motor and blade power plus wind.

The “D” of PID stands for differential - each time the
PID is called the difference in error since last time is
used to generate the output - if the “error” is worse
than last time, the PID “D” output is higher. This aims
to produce a predictive approach to error correction.

The results of all three are added together to give an
overall output and then, depending on the purpose of
the PID, applied to each of the blades appropriately.

It sounds like magic... and to some extent it is! Every
PID has three configurable gain factors configured for
it, one each for “P”, “I” and “D”. So in my case | have
twelve different gain factors. These are magic
numbers, which if too small do nothing, if too large
cause chaos and if applied wrongly cause
catastrophe. My next article will cover this in much
more detail, both how they work and how to tune the
gains. In the meantime, use the bill of materials on
page 5 and get on with building your own quadcopter.
The PID gains in the code I've supplied should be a
reasonable starting point for yours.

Flying Phoebe
At the moment it is simple but dangerous! Put

Phoebe on the ground, place a flat surface across her
propeller tips, put a spirit level on that surface and

make sure she’s on absolute horizontal by putting
padding under her feet - this is absolutely critical if
you don’t want her to drift in flight — we’ll fix this in
another article with some more PIDs.

Connect the LiPo battery. The ESCs will start
beeping loudly - ignore them.

Wait until the Wifi dongle starts to flash - that means
Phoebe’s WAP is working.

Connect via SSH / rlogin from a client such as
another Raspberry Pi, iPad etc. which you have
joined to Phoebe’s network.

Use the cd command to change to the directory
where you placed Phoebe’s code. Then enter:

sudo python ./phoebe.py -c
sudo python ./phoebe.py -c -t 550 -v

-c calibrates the sensors to the flat surface she’s on

-t 550 sets up the blades to just under take-off
speed

-v runs the video camera while she’s in flight.

There are other options. You can find them by
entering:

sudo python ./phoebe.py

Enjoy, but be careful.




