1. Evaluate each determinant. Show complete work.
(a) $\left|\begin{array}{ccc}3 & -2 & 1 \\ 3 & -1 & -2 \\ 3 & -2 & -3\end{array}\right|$
(b) $\left|\begin{array}{ccc}3 & 4 & 5 \\ -4 & 6 & 3 \\ 1 & -4 & 3\end{array}\right|$
(c) $\left|\begin{array}{lll}0 & \mathrm{a} & \mathrm{b} \\ 0 & \mathrm{c} & \mathrm{d} \\ 0 & \mathrm{x} & \mathrm{y}\end{array}\right|$
2. What value of x makes the determinant -4 ?
$\left|\begin{array}{ccc}-2 & 0 & 0 \\ -6 & x & 1 \\ -4 & 0 & -1\end{array}\right|$
3. Find whether the following matrix is invertible or not. Singular or non-singular? Do not find the inverse. Show your work.
$\left|\begin{array}{cccc}2 & 4 & 1 & 2 \\ -3 & 0 & 0 & 0 \\ 1 & 3 & 2 & 1 \\ -2 & 9 & 3 & 1\end{array}\right|$
4. Let A and B be 4×4 matrices with $\operatorname{det}(A)=-1$ and $\operatorname{det}(B)=2$. Then compute
(a) $\operatorname{det}(\mathrm{AB})$
(b) $\operatorname{det}\left(B^{5}\right)$
(c) $\operatorname{det}(2 \mathrm{~A})$
(d) $\operatorname{det}\left(\mathrm{A}^{\mathrm{T}} \mathrm{A}\right)$
(e) $\operatorname{det}\left(\mathrm{B}^{-1} \mathrm{AB}\right)$
(f) $\operatorname{det}(A B)^{T}$
5. True or False. Explain your answer mathematically.
(a) If A is invertible and 1 is an eigenvalue for A , then 1 is an eigenvalue for A^{-1}.
(b) If A is row equivalent to the identity matrix then A is diagonalizable.
(c) Each eigenvalue of A is also an eigenvalue of A^{2}.
(d) Two eigenvectors corresponding to the same eigenvalue are always linearly dependent.
(e) Similar matrices always have the same eigenvalues.
(f) Similar matrices always have the same eigenvectors.
(g) If A is nxn diagonalizable matrix, then each vector in R^{n} can be written as a linear combination of eigenvectors of A .
6. Find the eigenvalues of the following matrices.
(a) $\left[\begin{array}{ccc}3 & -2 & 8 \\ 0 & 5 & -2 \\ 0 & -4 & 3\end{array}\right]$
(b) $\left[\begin{array}{cccc}1 & 5 & -6 & -7 \\ 2 & 4 & 5 & 2 \\ 0 & 0 & -7 & -4 \\ 0 & 0 & 3 & 1\end{array}\right]$
7. Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$. Show that the characteristic polynomial of A is

$$
\lambda^{2}-(\text { trace } \mathrm{A}) \lambda+\operatorname{det}(\mathrm{A}) .
$$

8. Compute A^{8} when $A=\left(\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right)$.
9. Let
$A=\left(\begin{array}{ccc}1 & -3 & -3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$
Eigenvalues $\lambda=4,-2$ (repeated)
$\vec{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
$\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are the eigenvectors corresponding to the eigenvalues $4,-2,-2$ respectively

Use this information to diagonalize A .
10. Diagonalize the following matrices, if possible.
(a) $\mathrm{A}=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right] \quad$ (b) $\mathrm{B}=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 5 & -2 \\ 1 & 3 & 1\end{array}\right]$

