Find the inverse of matrices.

1.
$$A = 8(4) - 5(6) = 2$$

$$A^{-1} = \frac{1}{2} \begin{bmatrix} 4 & -6 \\ -5 & 8 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ 5/2 & 4 \end{bmatrix}$$

3.
$$A = 7(-3) - 3(-6) = -3$$

$$A^{-1} = -\frac{1}{3} \begin{bmatrix} -3 & 3 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -7/3 \end{bmatrix}$$

5. Use the inverse found in Exercise 3 to solve the system $8x_1+6x_2=2$ $5x_1+4x_2=-1$

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} -3 & 3\\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2\\ -1 \end{bmatrix} = \begin{bmatrix} 7\\ -9 \end{bmatrix}$$

7. Let $A = \begin{bmatrix} 1 & 2 \\ 5 & 12 \end{bmatrix}$, $\boldsymbol{b}_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, $\boldsymbol{b}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$, $\boldsymbol{b} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$, $\boldsymbol{b}_4 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$. Find A^{-1} , and use it to solve the four equations $A\mathbf{x} = \boldsymbol{b}_1$, $A\mathbf{x} = \boldsymbol{b}_2$, $A\mathbf{x} = \boldsymbol{b}_3$, $A\mathbf{x} = \boldsymbol{b}_4$

$$A = 1(12) - 2(5) = 2$$

$$A^{-1} = \frac{1}{2} \begin{bmatrix} 12 & -2 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -1 \\ -5/2 & 1/2 \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{b}_{1}$$

$$\begin{bmatrix} 6 & -1 \\ -5/2 & 1/2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 6(-1) + (-1)3 \\ \left(-\frac{5}{2}\right)(-1) + \frac{1}{2}(3) \end{bmatrix} = \begin{bmatrix} -9 \\ 4 \end{bmatrix}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}_{2}$$

$$\begin{bmatrix} 6 & -1 \\ -5/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 \\ -5 \end{bmatrix} = \begin{bmatrix} 6(1) + (-1)(-5) \\ \left(-\frac{5}{2}\right)(1) + \frac{1}{2}(-5) \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 6 & -1 \\ -5/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 6(2) + (-1)6 \\ \left(-\frac{5}{2} \right) 2 + \frac{1}{2}(6) \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}_4$$

$$\begin{bmatrix} 6 & -1 \\ -5/2 & 1/2 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 6(3) + (-1)5 \\ \left(-\frac{5}{2}\right)3 + \frac{1}{2}(5) \end{bmatrix} = \begin{bmatrix} 13 \\ -5 \end{bmatrix}$$

- 9. a) True
 - b) False because the inverse of AB is $B^{-1}A^{-1}$
 - c) False, its $ad bc \neq 0$
 - d)True
 - e)True
- 11. Let A be an invertible n x n matrix, and let B be an n x p matrix. Show that the equation Ax = B has a unique solution $A^{-1}B$.

Replace x in Ax = B for
$$A^{-1}B$$

Ax = A $(A^{-1}B) = (AA^{-1})B = IB$ since a matrix multiplied by identity matrix is the matrix itself $IB = B$, therefore Ax = B

13. Suppose AB = AC, where B and C are n x p matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible?

Since A is invertible to show
$$B = C$$
 we can multiply the equation $AB = AC$ by A^{-1} where we get $A^{-1}AB = A^{-1}AC$ $A^{-1}A = I$, so $A^{-1}AB = A^{-1}AC$ can be rewritten as $IB = IC$ which is equivalent to $B = C$

Pg. 101

23. Suppose $CA = I_n$ (the n x n identity matrix). Show that the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Explain why A cannot have more columns than rows.

We can multiply the vector \mathbf{x} to $CA = I_n$

 $CAx = I_nx$ which can be rewritten as CAx = x because x was being multiplied by an identity matrix. Since Ax = 0 we can substitute that in x = CAx and get C0 = 0 which shows that it has only the trivial solution.

This also shows us that A is linearly independent because we only have the trivial solution therefore it cannot have more columns than rows.

25. Suppose A is an m x n matrix and there exist n x m matrices C and D such that $CA = I_n$ and $AD = I_m$: Prove that m = n and C = D: [*Hint*: Think about the product CAD.]

We know that when A has the only trivial solution, the columns cannot be more than the rows and when A has solutions for every vector solution, the rows cannot be more than the columns. So in this case we can say that the columns equal the rows or m = n.

Since we are given a hint, the product $CAD = C(AD) = CI_m = C$ and also $CAD = (CA)D = I_nD = D$, therefore CAD = D = C.

27. Let
$$u = \begin{bmatrix} -3 \\ 2 \\ -5 \end{bmatrix}$$
 and $v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Compute $u^T v$, $v^T u$, uv^T , $vu^T u$, $uv^T v = \begin{bmatrix} -3 & 2 & -5 \end{bmatrix} * \begin{bmatrix} a \\ b \\ c \end{bmatrix} = -3a + 2b + 5c$

$$v^T u = \begin{bmatrix} a & b & c \end{bmatrix} * \begin{bmatrix} -3 \\ 2 \\ -5 \end{bmatrix} = -3a + 2b + 5c$$

$$uv^T = \begin{bmatrix} -3 \\ 2 \\ -5 \end{bmatrix} * \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} -3a & -3b & -3c \\ 2a & 2b & 2c \\ -5a & -5b & -5c \end{bmatrix}$$

$$vu^T = \begin{bmatrix} a \\ b \\ c \end{bmatrix} * \begin{bmatrix} -3 & 2 & -5a \\ -3b & 2b & -5b \\ -3c & 2c & -5c \end{bmatrix}$$

33. Prove Theorem 3(d). [Hint: Consider the j^{th} row of $(AB)^T$]

Let A be an m x n matrix and B be an n x p matrix. Then, AB is an m x p matrix and $(AB)^T$ is an p x m matrix. B^T is an p x n matrix and A^T is an n x m matrix. Therefore B^TA^T is an p x n matrix.