Linear Algebra

Justin Negron

Page 10 #'s 23-33 odd

Page 32 #'s 9-15 odd

23.

- Every elementary row operation is reversible.
 True, because if you do the inverse of the initial operation your answer will be the original row.
- b. A 5 X 6 matrix has six rows.False, this matrix has five rows and 6 columns.
- c. The solution set of a linear system involving variables X₁,...,Xn is a list of numbers (S₁,...,Sn) that makes each equation in the system a true statement when the values S₁,...,Sn are substituted for X₁,....Xn, respectively.

False, this statement only works for one given solution, not all given solutions.

d. Two fundamental questions about a linear system involve existence and uniqueness. True.

25.

 $\begin{bmatrix} 1 & 4 & 7 & g \\ 0 & 3 & -5 & h \\ -2 & 5 & -9 & k \end{bmatrix}$ X₁ - 4X₂ +7X₃ = g 0 + 3X₂ - 5X₃ = h -2x₁+5x₂-9x₃ = k 2(Row 1) + (Row 3) = New Row 3 2(X₁ - 4X₂ +7X₃ = g) => 2X₁ - 8X₂+14X₃=2g 2X₁ - 8X₂+14X₃=2g +-2x₁+5x₂-9x₃ = k 0 - 3x₂+5x₃ = k+2g => New Row 3 X₁ - 4X₂ +7X₃ = g 0 + 3X₂ - 5X₃ = h 0 - 3x₂+5x₃ = k+2g

```
Row 2 + Row 3 = New Row 3
0 + 3X_2 - 5X_3 = h
+0-3x_2+5x_3 = k+2g
  0 + 0 + 0 = h +k + 2g => New Row 3
X_1 - 4X_2 + 7X_3 = g
     3X_2 - 5X_3 = h
0 + 0 + 0 = h + k + 2g
\begin{bmatrix} 1 & 4 & 7 & g \\ 0 & 3 & -5 & h \\ 0 & 0 & 0 & h+k+2g \end{bmatrix}
27.
aX1 + bX2 = f
cX1 + dX2 = g
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} X1 \\ X2 \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}
\begin{bmatrix} a & b & f \\ c & d & g \end{bmatrix}
Multiply Row 1 by (-c/a) + Row 2
-c/a(aX1 + bX2 = f)
(-ca/a)X1 + (-cb/a)X2 = (-cf/a)
+ cX1 + dX2 = g
```

0 + d-b(c/a) = g - f(c/a)

The system is consistent so there are solutions for X_1 and X_2 . d-b(c/a) $\neq 0$

$$\mathbf{29.} \begin{bmatrix} 0 & -2 & 5 \\ 1 & 3 & -5 \\ 3 & -1 & 6 \end{bmatrix}, \begin{bmatrix} 3 & -1 & 6 \\ 1 & 3 & -5 \\ 0 & -2 & 5 \end{bmatrix}$$

Step 1:

Row 1 and Row 3 were Swapped or Interchanged.

31. $\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 4 & -1 & 3 & -6 \end{bmatrix}$, $\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 5 & -2 & 8 \\ 0 & 7 & -1 & -6 \end{bmatrix}$

Step 2:

Row 3 was added to (-4)Row1 to get a new Row 3

Row 3 + (-4)Row 1 = New Row 3

New Row 1: $-4(X_1 - 2X_2 + X_3 = 0) = -4X_1 + 8X_2 - 4X_3 = 0$

 $4X_1 - X_2 + 3X_3 = -6$ +-4X_1 + 8X_2 - 4X_3 = 0 -7X_2 - X_3 = -6

New Matrix:

ſ1	-2	1	0]
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	5	-2	8
Lo	7	-1	-6

33.

$$4 T_4 - T_3 - 0T_2 - T_1 = 40$$

$$-T_4 + 4T_3 - T_2 - 0T_1 = 70$$

$$-0T_4 - T_3 + 4T_2 - T_1 = 60$$

$$-T_4 - 0T_3 - T_2 + 4T_1 = 30$$

$$\begin{bmatrix} 4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} T4 \\ T3 \\ T2 \\ T1 \end{bmatrix} = \begin{bmatrix} 40 \\ 70 \\ 60 \\ 30 \end{bmatrix}$$

Page 32 # 9 – 15

9. Write a vector equation that is equivalent to the given system of equations.

```
X_{2} + 5X_{3} = 0
4x_{1} + 6X_{2} - X_{3} = 0
-x_{1} + 3x_{2} - 8x_{3} = 0
x_{1} \begin{bmatrix} 0\\ 4\\ -1 \end{bmatrix} + x_{2} \begin{bmatrix} 1\\ 6\\ 3 \end{bmatrix} + x_{3} \begin{bmatrix} 5\\ -1\\ -8 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}
```

```
11.
```

	[1]		[0]		[5]		[2]	
a1	-2	, a2	1	, a3	-6	, b=	-1	
			2		8		6	

Matrix Form:

I	1	0	5	2]
	-2	1	-6	$\begin{bmatrix} -1\\ 6 \end{bmatrix}$
	0	2	8	6]

Step 1:

Swap Row 2 and Row 3

 $\begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 2 & 8 & 6 \\ -2 & 1 & -6 & -1 \end{bmatrix}$

Step 2:

Multiply 2(Row 1) then add Row 3.

2(Row 1) + Row 3 = New Row 3

 $X_1 + 0X_2 + 5X_3 = 2$ $0 + 2X_2 + 8X_3 = 6$ $-2x_1+x_2-6x_3 = -1$ New Row 1: $2(X_1 + 0X2 + 5X3 = 2) => 2X_1 + 0X2 + 10X3 = 4$

```
2X_{1} + 0X_{2} + 10X_{3} = 4
+-2x_{1}+x_{2}-6x_{3} = -1
0 + X_{2} + 4X_{3} = 3
New Matrix:
\begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 2 & 8 & 6 \\ 0 & 1 & 4 & 3 \end{bmatrix}
```

Step 3:

Row 2 + (-2)Row 3 = New Row 3

New Row 3: $-2(0 + X_2 + 4X_3 = 3) = > 0 - 2X_2 - 8X_3 = -6$

 $0 + 2X_2 + 8X_3 = 6$ +0 -2X_2 -8X_3 = -6 0 + 0 + 0 = 0No, b = 0 so there is no linear combination for a1, a2, and a3.

13.

$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}, b = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$$

$$X_{1} - 4X_{2} + 2X_{3} = 3$$

$$0 + 3X_{2} + 5X_{3} = -7$$

$$-2x_{1} + 8x_{2} - 4x_{3} = -3$$

Step 1:
Row 3 + 2(Row 1) = New Row 3
New Row 1: 2(X_{1} - 4X_{2} + 2X_{3} = 3) => 2X_{1} - 8X_{2} + 4X_{3} = 6

$$-2x_{1} + 8x_{2} - 4x_{3} = -3$$

$$+2X_{1} - 8X_{2} + 4X_{3} = 6$$

0 + 0 + 0 = 3

There is no linear combination for b in the vectors formed from the columns of the matrix A.

15.

$$a1\begin{bmatrix}1\\3\\-1\end{bmatrix}, a2\begin{bmatrix}-5\\-8\\2\end{bmatrix}, b=\begin{bmatrix}3\\-5\\h\end{bmatrix}$$

For what value(s) of *h* is b in the plane spanned by a1 and a2?

X1	1 3 1	+ X2	[-5 -8 2	$= \begin{bmatrix} 3\\-5\\h \end{bmatrix}$]	
X ₁ - 5X ₂ = 3						

 $3X_1 - 8X_2 = 5$ $x_1 + 2x_2 = h$

 $\begin{bmatrix} 1 & -5 & 3 \\ 3 & -8 & -5 \\ -1 & 2 & h \end{bmatrix}$

Step 1: -3(Row 1) + Row 2

New Row 1: $-3(X_1 - 5X_2 = 3) = -3X_1 + 15X_2 = -9$

 $-3X_1 + 15X_2 = -9$ +3X₁ -8X₂= 5 + 7X₂ = -14: New Row 2

 $\begin{bmatrix} 1 & -5 & 3 \\ 0 & 7 & -14 \\ -1 & 2 & h \end{bmatrix}$

Step 2:

Row 1 + Row 3 = New Row 3

 $X_1 - 5X_2 = 3$ $+ -X_1 + 2X_2 = h$ $0 -3X_2 = 3 + h$

$$\begin{bmatrix} 1 & -5 & 3 \\ 0 & 7 & -14 \\ 0 & -3 & 3+h \end{bmatrix}$$

Step 3:

(1/2)Row 2 = New Row 2

 $\begin{bmatrix} 1 & -5 & 3 \\ 0 & 1 & -2 \\ 0 & -3 & 3+h \end{bmatrix}$

Step 4:

3(Row 2) + Row 3 = New Row 3

 $3(X_{2}=-2) => 3X_{1} + 3X_{2} = -6$ $3X_{2} = -6$ $+ -3X_{2} = 3 + h$ 0 = h - 3 : New Row 3 $\begin{bmatrix} 1 & -5 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & h - 3 \end{bmatrix}$

The system has a solution to the augmented matrix when h-3=0. b is in the plane spanned a1 and a2 when h=3